Compare commits
	
		
			5 Commits
		
	
	
		
			hi3861
			...
			74821bb02c
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| 74821bb02c | |||
| 88a80c225c | |||
| 8ace9df86a | |||
| 233ef20ce2 | |||
| a688e17e4e | 
							
								
								
									
										4
									
								
								.idea/License_plate_recognition.iml
									
									
									
										generated
									
									
									
								
							
							
						
						
									
										4
									
								
								.idea/License_plate_recognition.iml
									
									
									
										generated
									
									
									
								
							@@ -5,8 +5,4 @@
 | 
			
		||||
    <orderEntry type="jdk" jdkName="cnm" jdkType="Python SDK" />
 | 
			
		||||
    <orderEntry type="sourceFolder" forTests="false" />
 | 
			
		||||
  </component>
 | 
			
		||||
  <component name="PyDocumentationSettings">
 | 
			
		||||
    <option name="format" value="PLAIN" />
 | 
			
		||||
    <option name="myDocStringFormat" value="Plain" />
 | 
			
		||||
  </component>
 | 
			
		||||
</module>
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								LPRNET_part/1.jpg
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								LPRNET_part/1.jpg
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 3.8 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								LPRNET_part/2.jpg
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								LPRNET_part/2.jpg
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 3.0 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								LPRNET_part/6ce2ec7dbed6cf3c8403abe2683c57e5.jpg
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								LPRNET_part/6ce2ec7dbed6cf3c8403abe2683c57e5.jpg
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 4.0 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								LPRNET_part/LPRNet__iteration_74000.pth
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								LPRNET_part/LPRNet__iteration_74000.pth
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								LPRNET_part/c11304d10bcd47911e458398d1ea445d.jpg
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								LPRNET_part/c11304d10bcd47911e458398d1ea445d.jpg
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 7.3 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								LPRNET_part/c6ab0fbcfb2b6fbe15c5b3eb9806a28b.jpg
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								LPRNET_part/c6ab0fbcfb2b6fbe15c5b3eb9806a28b.jpg
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 64 KiB  | 
@@ -1,3 +1,4 @@
 | 
			
		||||
# 导入必要的库
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
import cv2
 | 
			
		||||
@@ -11,6 +12,7 @@ from PIL import Image
 | 
			
		||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
 | 
			
		||||
 | 
			
		||||
# LPRNet字符集定义(与训练时保持一致)
 | 
			
		||||
# 包含中国省份简称、数字、字母和特殊字符
 | 
			
		||||
CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
 | 
			
		||||
         '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
 | 
			
		||||
         '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新',
 | 
			
		||||
@@ -19,84 +21,115 @@ CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
 | 
			
		||||
         'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
 | 
			
		||||
         'W', 'X', 'Y', 'Z', 'I', 'O', '-']
 | 
			
		||||
 | 
			
		||||
# 创建字符到索引的映射字典
 | 
			
		||||
CHARS_DICT = {char: i for i, char in enumerate(CHARS)}
 | 
			
		||||
 | 
			
		||||
# 简化的LPRNet模型定义
 | 
			
		||||
# 简化的LPRNet模型定义 - 基础卷积块
 | 
			
		||||
class small_basic_block(nn.Module):
 | 
			
		||||
    def __init__(self, ch_in, ch_out):
 | 
			
		||||
        super(small_basic_block, self).__init__()
 | 
			
		||||
        # 定义一个小的基本卷积块,包含四个卷积层
 | 
			
		||||
        self.block = nn.Sequential(
 | 
			
		||||
            # 1x1卷积,降低通道数
 | 
			
		||||
            nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),
 | 
			
		||||
            nn.ReLU(),
 | 
			
		||||
            # 3x1卷积,处理水平特征
 | 
			
		||||
            nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),
 | 
			
		||||
            nn.ReLU(),
 | 
			
		||||
            # 1x3卷积,处理垂直特征
 | 
			
		||||
            nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),
 | 
			
		||||
            nn.ReLU(),
 | 
			
		||||
            # 1x1卷积,恢复通道数
 | 
			
		||||
            nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        return self.block(x)
 | 
			
		||||
 | 
			
		||||
# LPRNet模型定义 - 车牌识别网络
 | 
			
		||||
class LPRNet(nn.Module):
 | 
			
		||||
    def __init__(self, lpr_max_len, phase, class_num, dropout_rate):
 | 
			
		||||
        super(LPRNet, self).__init__()
 | 
			
		||||
        self.phase = phase
 | 
			
		||||
        self.lpr_max_len = lpr_max_len
 | 
			
		||||
        self.class_num = class_num
 | 
			
		||||
        
 | 
			
		||||
        # 定义主干网络
 | 
			
		||||
        self.backbone = nn.Sequential(
 | 
			
		||||
            # 初始卷积层
 | 
			
		||||
            nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0
 | 
			
		||||
            nn.BatchNorm2d(num_features=64),
 | 
			
		||||
            nn.ReLU(),  # 2
 | 
			
		||||
            # 最大池化层
 | 
			
		||||
            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),
 | 
			
		||||
            # 第一个基本块
 | 
			
		||||
            small_basic_block(ch_in=64, ch_out=128),    # *** 4 ***
 | 
			
		||||
            nn.BatchNorm2d(num_features=128),
 | 
			
		||||
            nn.ReLU(),  # 6
 | 
			
		||||
            # 第二个池化层
 | 
			
		||||
            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),
 | 
			
		||||
            # 第二个基本块
 | 
			
		||||
            small_basic_block(ch_in=64, ch_out=256),   # 8
 | 
			
		||||
            nn.BatchNorm2d(num_features=256),
 | 
			
		||||
            nn.ReLU(),  # 10
 | 
			
		||||
            # 第三个基本块
 | 
			
		||||
            small_basic_block(ch_in=256, ch_out=256),   # *** 11 ***
 | 
			
		||||
            nn.BatchNorm2d(num_features=256),
 | 
			
		||||
            nn.ReLU(),  # 13
 | 
			
		||||
            # 第三个池化层
 | 
			
		||||
            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)),  # 14
 | 
			
		||||
            # Dropout层,防止过拟合
 | 
			
		||||
            nn.Dropout(dropout_rate),
 | 
			
		||||
            # 特征提取卷积层
 | 
			
		||||
            nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1), # 16
 | 
			
		||||
            nn.BatchNorm2d(num_features=256),
 | 
			
		||||
            nn.ReLU(),  # 18
 | 
			
		||||
            # 第二个Dropout层
 | 
			
		||||
            nn.Dropout(dropout_rate),
 | 
			
		||||
            # 分类卷积层
 | 
			
		||||
            nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # 20
 | 
			
		||||
            nn.BatchNorm2d(num_features=class_num),
 | 
			
		||||
            nn.ReLU(),  # 22
 | 
			
		||||
        )
 | 
			
		||||
        
 | 
			
		||||
        # 定义容器层,用于融合全局上下文信息
 | 
			
		||||
        self.container = nn.Sequential(
 | 
			
		||||
            nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1,1), stride=(1,1)),
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        # 保存中间特征
 | 
			
		||||
        keep_features = list()
 | 
			
		||||
        for i, layer in enumerate(self.backbone.children()):
 | 
			
		||||
            x = layer(x)
 | 
			
		||||
            # 保存特定层的输出特征
 | 
			
		||||
            if i in [2, 6, 13, 22]: # [2, 4, 8, 11, 22]
 | 
			
		||||
                keep_features.append(x)
 | 
			
		||||
 | 
			
		||||
        # 处理全局上下文信息
 | 
			
		||||
        global_context = list()
 | 
			
		||||
        for i, f in enumerate(keep_features):
 | 
			
		||||
            # 对不同层的特征进行不同尺度的平均池化
 | 
			
		||||
            if i in [0, 1]:
 | 
			
		||||
                f = nn.AvgPool2d(kernel_size=5, stride=5)(f)
 | 
			
		||||
            if i in [2]:
 | 
			
		||||
                f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)
 | 
			
		||||
            # 对特征进行归一化处理
 | 
			
		||||
            f_pow = torch.pow(f, 2)
 | 
			
		||||
            f_mean = torch.mean(f_pow)
 | 
			
		||||
            f = torch.div(f, f_mean)
 | 
			
		||||
            global_context.append(f)
 | 
			
		||||
 | 
			
		||||
        # 拼接全局上下文特征
 | 
			
		||||
        x = torch.cat(global_context, 1)
 | 
			
		||||
        # 通过容器层处理
 | 
			
		||||
        x = self.container(x)
 | 
			
		||||
        # 对序列维度进行平均,得到最终输出
 | 
			
		||||
        logits = torch.mean(x, dim=2)
 | 
			
		||||
 | 
			
		||||
        return logits
 | 
			
		||||
 | 
			
		||||
# LPRNet推理类
 | 
			
		||||
class LPRNetInference:
 | 
			
		||||
    def __init__(self, model_path=None, img_size=[94, 24], lpr_max_len=8, dropout_rate=0.5):
 | 
			
		||||
        """
 | 
			
		||||
@@ -109,6 +142,7 @@ class LPRNetInference:
 | 
			
		||||
        """
 | 
			
		||||
        self.img_size = img_size
 | 
			
		||||
        self.lpr_max_len = lpr_max_len
 | 
			
		||||
        # 检测是否有可用的CUDA设备
 | 
			
		||||
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 | 
			
		||||
        
 | 
			
		||||
        # 设置默认模型路径
 | 
			
		||||
@@ -130,6 +164,7 @@ class LPRNetInference:
 | 
			
		||||
        else:
 | 
			
		||||
            print(f"Warning: 模型文件不存在或未指定: {model_path}. 使用随机权重.")
 | 
			
		||||
        
 | 
			
		||||
        # 将模型移动到指定设备并设置为评估模式
 | 
			
		||||
        self.model.to(self.device)
 | 
			
		||||
        self.model.eval()
 | 
			
		||||
        
 | 
			
		||||
@@ -164,9 +199,11 @@ class LPRNetInference:
 | 
			
		||||
            image_array = cv2.resize(image_array, tuple(self.img_size))
 | 
			
		||||
        
 | 
			
		||||
        # 使用与训练时相同的预处理方式
 | 
			
		||||
        # 归一化处理:减去127.5并乘以0.0078125,将像素值从[0,255]映射到[-1,1]
 | 
			
		||||
        image_array = image_array.astype('float32')
 | 
			
		||||
        image_array -= 127.5
 | 
			
		||||
        image_array *= 0.0078125
 | 
			
		||||
        # 调整维度顺序从HWC到CHW
 | 
			
		||||
        image_array = np.transpose(image_array, (2, 0, 1))  # HWC -> CHW
 | 
			
		||||
        
 | 
			
		||||
        # 转换为tensor并添加batch维度
 | 
			
		||||
@@ -186,7 +223,7 @@ class LPRNetInference:
 | 
			
		||||
        prebs = logits.cpu().detach().numpy()
 | 
			
		||||
        preb = prebs[0, :, :]  # 取第一个batch [num_classes, sequence_length]
 | 
			
		||||
        
 | 
			
		||||
        # 贪婪解码:对每个时间步选择最大概率的字符
 | 
			
		||||
        # 贪婪解码: 对每个时间步选择最大概率的字符
 | 
			
		||||
        preb_label = []
 | 
			
		||||
        for j in range(preb.shape[1]):  # 遍历每个时间步
 | 
			
		||||
            preb_label.append(np.argmax(preb[:, j], axis=0))
 | 
			
		||||
@@ -248,7 +285,7 @@ class LPRNetInference:
 | 
			
		||||
            print(f"预测图像失败: {e}")
 | 
			
		||||
            return None, 0.0
 | 
			
		||||
 | 
			
		||||
# 全局变量
 | 
			
		||||
# 全局变量,用于存储模型实例
 | 
			
		||||
lpr_model = None
 | 
			
		||||
 | 
			
		||||
def LPRNinitialize_model():
 | 
			
		||||
@@ -295,6 +332,13 @@ def LPRNmodel_predict(image_array):
 | 
			
		||||
        return ['待', '识', '别', '0', '0', '0', '0', '0']
 | 
			
		||||
    
 | 
			
		||||
    try:
 | 
			
		||||
        # 使用OpenCV调整图像大小到模型要求的尺寸
 | 
			
		||||
        image_array = cv2.resize(image_array, (94, 24))
 | 
			
		||||
        print(f"666999图片尺寸: {image_array.shape}")
 | 
			
		||||
        
 | 
			
		||||
        # 显示修正后的图像
 | 
			
		||||
        cv2.imshow('Resized License Plate Image (94x24)', image_array)
 | 
			
		||||
        cv2.waitKey(1)  # 非阻塞显示,允许程序继续执行
 | 
			
		||||
        # 预测车牌号
 | 
			
		||||
        predicted_text, confidence = lpr_model.predict(image_array)
 | 
			
		||||
        
 | 
			
		||||
 
 | 
			
		||||
@@ -5,6 +5,18 @@ import cv2
 | 
			
		||||
class OCRProcessor:
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        self.model = TextRecognition(model_name="PP-OCRv5_server_rec")
 | 
			
		||||
        # 定义允许的字符集合(不包含空白字符)
 | 
			
		||||
        self.allowed_chars = [
 | 
			
		||||
            # 中文省份简称
 | 
			
		||||
            '京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
 | 
			
		||||
            '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
 | 
			
		||||
            '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新',
 | 
			
		||||
            # 字母 A-Z
 | 
			
		||||
            'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 
 | 
			
		||||
            'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
 | 
			
		||||
            # 数字 0-9
 | 
			
		||||
            '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'
 | 
			
		||||
        ]
 | 
			
		||||
        print("OCR模型初始化完成(占位)")
 | 
			
		||||
 | 
			
		||||
    def predict(self, image_array):
 | 
			
		||||
@@ -15,6 +27,14 @@ class OCRProcessor:
 | 
			
		||||
        placeholder_result = results.split(',')
 | 
			
		||||
        return placeholder_result
 | 
			
		||||
    
 | 
			
		||||
    def filter_allowed_chars(self, text):
 | 
			
		||||
        """只保留允许的字符"""
 | 
			
		||||
        filtered_text = ""
 | 
			
		||||
        for char in text:
 | 
			
		||||
            if char in self.allowed_chars:
 | 
			
		||||
                filtered_text += char
 | 
			
		||||
        return filtered_text
 | 
			
		||||
 | 
			
		||||
# 保留原有函数接口
 | 
			
		||||
_processor = OCRProcessor()
 | 
			
		||||
 | 
			
		||||
@@ -42,8 +62,12 @@ def LPRNmodel_predict(image_array):
 | 
			
		||||
    else:
 | 
			
		||||
        result_str = str(raw_result)
 | 
			
		||||
    
 | 
			
		||||
    # 过滤掉'·'字符
 | 
			
		||||
    # 过滤掉'·'和'-'字符
 | 
			
		||||
    filtered_str = result_str.replace('·', '')
 | 
			
		||||
    filtered_str = filtered_str.replace('-', '')
 | 
			
		||||
    
 | 
			
		||||
    # 只保留允许的字符
 | 
			
		||||
    filtered_str = _processor.filter_allowed_chars(filtered_str)
 | 
			
		||||
    
 | 
			
		||||
    # 转换为字符列表
 | 
			
		||||
    char_list = list(filtered_str)
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								lightCRNN_part/best_model.pth
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								lightCRNN_part/best_model.pth
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										539
									
								
								main.py
									
									
									
									
									
								
							
							
						
						
									
										539
									
								
								main.py
									
									
									
									
									
								
							@@ -1,25 +1,22 @@
 | 
			
		||||
import sys
 | 
			
		||||
import os
 | 
			
		||||
import cv2
 | 
			
		||||
import numpy as np
 | 
			
		||||
from PyQt5.QtWidgets import (
 | 
			
		||||
    QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout,
 | 
			
		||||
    QLabel, QPushButton, QScrollArea, QFrame, QSizePolicy
 | 
			
		||||
)
 | 
			
		||||
from PyQt5.QtWidgets import QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout, QLabel, QPushButton, \
 | 
			
		||||
    QFileDialog, QFrame, QScrollArea, QComboBox
 | 
			
		||||
from PyQt5.QtCore import QTimer, Qt, pyqtSignal, QThread
 | 
			
		||||
from PyQt5.QtGui import QImage, QPixmap, QFont, QPainter, QPen, QColor
 | 
			
		||||
import os
 | 
			
		||||
from yolopart.detector import LicensePlateYOLO
 | 
			
		||||
 | 
			
		||||
#选择使用哪个模块
 | 
			
		||||
from LPRNET_part.lpr_interface import LPRNmodel_predict
 | 
			
		||||
from LPRNET_part.lpr_interface import LPRNinitialize_model
 | 
			
		||||
 | 
			
		||||
# from LPRNET_part.lpr_interface import LPRNmodel_predict
 | 
			
		||||
# from LPRNET_part.lpr_interface import LPRNinitialize_model
 | 
			
		||||
#使用OCR
 | 
			
		||||
#from OCR_part.ocr_interface import LPRNmodel_predict
 | 
			
		||||
#from OCR_part.ocr_interface import LPRNinitialize_model
 | 
			
		||||
# from OCR_part.ocr_interface import LPRNmodel_predict
 | 
			
		||||
# from OCR_part.ocr_interface import LPRNinitialize_model
 | 
			
		||||
# 使用CRNN
 | 
			
		||||
#from CRNN_part.crnn_interface import LPRNmodel_predict
 | 
			
		||||
#from CRNN_part.crnn_interface import LPRNinitialize_model
 | 
			
		||||
# from CRNN_part.crnn_interface import LPRNmodel_predict
 | 
			
		||||
# from CRNN_part.crnn_interface import LPRNinitialize_model
 | 
			
		||||
 | 
			
		||||
class CameraThread(QThread):
 | 
			
		||||
    """摄像头线程类"""
 | 
			
		||||
@@ -56,6 +53,60 @@ class CameraThread(QThread):
 | 
			
		||||
                    self.frame_ready.emit(frame)
 | 
			
		||||
            self.msleep(30)  # 约30fps
 | 
			
		||||
 | 
			
		||||
class VideoThread(QThread):
 | 
			
		||||
    """视频处理线程类"""
 | 
			
		||||
    frame_ready = pyqtSignal(np.ndarray)
 | 
			
		||||
    video_finished = pyqtSignal()
 | 
			
		||||
    
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.video_path = None
 | 
			
		||||
        self.cap = None
 | 
			
		||||
        self.running = False
 | 
			
		||||
        self.paused = False
 | 
			
		||||
    
 | 
			
		||||
    def load_video(self, video_path):
 | 
			
		||||
        """加载视频文件"""
 | 
			
		||||
        self.video_path = video_path
 | 
			
		||||
        self.cap = cv2.VideoCapture(video_path)
 | 
			
		||||
        return self.cap.isOpened()
 | 
			
		||||
    
 | 
			
		||||
    def start_video(self):
 | 
			
		||||
        """开始播放视频"""
 | 
			
		||||
        if self.cap and self.cap.isOpened():
 | 
			
		||||
            self.running = True
 | 
			
		||||
            self.paused = False
 | 
			
		||||
            self.start()
 | 
			
		||||
            return True
 | 
			
		||||
        return False
 | 
			
		||||
    
 | 
			
		||||
    def pause_video(self):
 | 
			
		||||
        """暂停/继续视频"""
 | 
			
		||||
        self.paused = not self.paused
 | 
			
		||||
        return self.paused
 | 
			
		||||
    
 | 
			
		||||
    def stop_video(self):
 | 
			
		||||
        """停止视频"""
 | 
			
		||||
        self.running = False
 | 
			
		||||
        if self.cap:
 | 
			
		||||
            self.cap.release()
 | 
			
		||||
        self.quit()
 | 
			
		||||
        self.wait()
 | 
			
		||||
    
 | 
			
		||||
    def run(self):
 | 
			
		||||
        """线程运行函数"""
 | 
			
		||||
        while self.running:
 | 
			
		||||
            if not self.paused and self.cap and self.cap.isOpened():
 | 
			
		||||
                ret, frame = self.cap.read()
 | 
			
		||||
                if ret:
 | 
			
		||||
                    self.frame_ready.emit(frame)
 | 
			
		||||
                else:
 | 
			
		||||
                    # 视频播放结束
 | 
			
		||||
                    self.video_finished.emit()
 | 
			
		||||
                    self.running = False
 | 
			
		||||
                    break
 | 
			
		||||
            self.msleep(30)  # 约30fps
 | 
			
		||||
 | 
			
		||||
class LicensePlateWidget(QWidget):
 | 
			
		||||
    """单个车牌结果显示组件"""
 | 
			
		||||
    
 | 
			
		||||
@@ -162,15 +213,21 @@ class MainWindow(QMainWindow):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        self.detector = None
 | 
			
		||||
        self.camera_thread = None
 | 
			
		||||
        self.video_thread = None
 | 
			
		||||
        self.current_frame = None
 | 
			
		||||
        self.detections = []
 | 
			
		||||
        self.current_mode = "camera"  # 当前模式:camera, video, image
 | 
			
		||||
        self.is_processing = False  # 标志位,表示是否正在处理识别任务
 | 
			
		||||
        self.last_plate_results = []  # 存储上一次的车牌识别结果
 | 
			
		||||
        self.current_recognition_method = "CRNN"  # 当前识别方法
 | 
			
		||||
        
 | 
			
		||||
        self.init_ui()
 | 
			
		||||
        self.init_detector()
 | 
			
		||||
        self.init_camera()
 | 
			
		||||
        self.init_video()
 | 
			
		||||
 | 
			
		||||
        # 初始化OCR/CRNN模型(函数名改成一样的了,所以不要修改这里了,想用哪个模块直接导入)
 | 
			
		||||
        LPRNinitialize_model()
 | 
			
		||||
        # 初始化默认识别方法(CRNN)的模型
 | 
			
		||||
        self.change_recognition_method(self.current_recognition_method)
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    def init_ui(self):
 | 
			
		||||
@@ -197,7 +254,7 @@ class MainWindow(QMainWindow):
 | 
			
		||||
        self.camera_label.setStyleSheet("QLabel { background-color: black; border: 1px solid #ccc; }")
 | 
			
		||||
        self.camera_label.setAlignment(Qt.AlignCenter)
 | 
			
		||||
        self.camera_label.setText("摄像头未启动")
 | 
			
		||||
        self.camera_label.setScaledContents(True)
 | 
			
		||||
        self.camera_label.setScaledContents(False)
 | 
			
		||||
        
 | 
			
		||||
        # 控制按钮
 | 
			
		||||
        button_layout = QHBoxLayout()
 | 
			
		||||
@@ -207,8 +264,26 @@ class MainWindow(QMainWindow):
 | 
			
		||||
        self.stop_button.clicked.connect(self.stop_camera)
 | 
			
		||||
        self.stop_button.setEnabled(False)
 | 
			
		||||
        
 | 
			
		||||
        # 视频控制按钮
 | 
			
		||||
        self.open_video_button = QPushButton("打开视频")
 | 
			
		||||
        self.stop_video_button = QPushButton("停止视频")
 | 
			
		||||
        self.pause_video_button = QPushButton("暂停视频")
 | 
			
		||||
        self.open_video_button.clicked.connect(self.open_video_file)
 | 
			
		||||
        self.stop_video_button.clicked.connect(self.stop_video)
 | 
			
		||||
        self.pause_video_button.clicked.connect(self.pause_video)
 | 
			
		||||
        self.stop_video_button.setEnabled(False)
 | 
			
		||||
        self.pause_video_button.setEnabled(False)
 | 
			
		||||
        
 | 
			
		||||
        # 图片控制按钮
 | 
			
		||||
        self.open_image_button = QPushButton("打开图片")
 | 
			
		||||
        self.open_image_button.clicked.connect(self.open_image_file)
 | 
			
		||||
        
 | 
			
		||||
        button_layout.addWidget(self.start_button)
 | 
			
		||||
        button_layout.addWidget(self.stop_button)
 | 
			
		||||
        button_layout.addWidget(self.open_video_button)
 | 
			
		||||
        button_layout.addWidget(self.stop_video_button)
 | 
			
		||||
        button_layout.addWidget(self.pause_video_button)
 | 
			
		||||
        button_layout.addWidget(self.open_image_button)
 | 
			
		||||
        button_layout.addStretch()
 | 
			
		||||
        
 | 
			
		||||
        left_layout.addWidget(self.camera_label)
 | 
			
		||||
@@ -227,6 +302,20 @@ class MainWindow(QMainWindow):
 | 
			
		||||
        title_label.setFont(QFont("Arial", 16, QFont.Bold))
 | 
			
		||||
        title_label.setStyleSheet("QLabel { color: #333; padding: 10px; }")
 | 
			
		||||
        
 | 
			
		||||
        # 识别方法选择
 | 
			
		||||
        method_layout = QHBoxLayout()
 | 
			
		||||
        method_label = QLabel("识别方法:")
 | 
			
		||||
        method_label.setFont(QFont("Arial", 10))
 | 
			
		||||
        
 | 
			
		||||
        self.method_combo = QComboBox()
 | 
			
		||||
        self.method_combo.addItems(["CRNN", "LPRNET", "OCR"])
 | 
			
		||||
        self.method_combo.setCurrentText("CRNN")  # 默认选择CRNN
 | 
			
		||||
        self.method_combo.currentTextChanged.connect(self.change_recognition_method)
 | 
			
		||||
        
 | 
			
		||||
        method_layout.addWidget(method_label)
 | 
			
		||||
        method_layout.addWidget(self.method_combo)
 | 
			
		||||
        method_layout.addStretch()
 | 
			
		||||
        
 | 
			
		||||
        # 车牌数量显示
 | 
			
		||||
        self.count_label = QLabel("识别到的车牌数量: 0")
 | 
			
		||||
        self.count_label.setAlignment(Qt.AlignCenter)
 | 
			
		||||
@@ -253,9 +342,17 @@ class MainWindow(QMainWindow):
 | 
			
		||||
        
 | 
			
		||||
        scroll_area.setWidget(self.results_widget)
 | 
			
		||||
        
 | 
			
		||||
        # 当前识别任务显示
 | 
			
		||||
        self.current_method_label = QLabel("当前识别方法: CRNN")
 | 
			
		||||
        self.current_method_label.setAlignment(Qt.AlignRight)
 | 
			
		||||
        self.current_method_label.setFont(QFont("Arial", 9))
 | 
			
		||||
        self.current_method_label.setStyleSheet("QLabel { color: #666; padding: 5px; }")
 | 
			
		||||
        
 | 
			
		||||
        right_layout.addWidget(title_label)
 | 
			
		||||
        right_layout.addLayout(method_layout)
 | 
			
		||||
        right_layout.addWidget(self.count_label)
 | 
			
		||||
        right_layout.addWidget(scroll_area)
 | 
			
		||||
        right_layout.addWidget(self.current_method_label)
 | 
			
		||||
        
 | 
			
		||||
        # 添加到主布局
 | 
			
		||||
        main_layout.addWidget(left_frame, 2)
 | 
			
		||||
@@ -296,6 +393,12 @@ class MainWindow(QMainWindow):
 | 
			
		||||
        self.camera_thread = CameraThread()
 | 
			
		||||
        self.camera_thread.frame_ready.connect(self.process_frame)
 | 
			
		||||
    
 | 
			
		||||
    def init_video(self):
 | 
			
		||||
        """初始化视频线程"""
 | 
			
		||||
        self.video_thread = VideoThread()
 | 
			
		||||
        self.video_thread.frame_ready.connect(self.process_frame)
 | 
			
		||||
        self.video_thread.video_finished.connect(self.on_video_finished)
 | 
			
		||||
    
 | 
			
		||||
    def start_camera(self):
 | 
			
		||||
        """启动摄像头"""
 | 
			
		||||
        if self.camera_thread.start_camera():
 | 
			
		||||
@@ -311,23 +414,167 @@ class MainWindow(QMainWindow):
 | 
			
		||||
        self.start_button.setEnabled(True)
 | 
			
		||||
        self.stop_button.setEnabled(False)
 | 
			
		||||
        self.camera_label.setText("摄像头已停止")
 | 
			
		||||
        self.camera_label.clear()
 | 
			
		||||
        # 只在摄像头模式下清除标签内容
 | 
			
		||||
        if self.current_mode == "camera":
 | 
			
		||||
            self.camera_label.clear()
 | 
			
		||||
    
 | 
			
		||||
    def on_video_finished(self):
 | 
			
		||||
        """视频播放结束时的处理"""
 | 
			
		||||
        self.video_thread.stop_video()
 | 
			
		||||
        self.open_video_button.setEnabled(True)
 | 
			
		||||
        self.stop_video_button.setEnabled(False)
 | 
			
		||||
        self.pause_video_button.setEnabled(False)
 | 
			
		||||
        self.camera_label.setText("视频播放结束")
 | 
			
		||||
        self.current_mode = "camera"
 | 
			
		||||
    
 | 
			
		||||
    def open_video_file(self):
 | 
			
		||||
        """打开视频文件"""
 | 
			
		||||
        # 停止当前模式
 | 
			
		||||
        if self.current_mode == "camera" and self.camera_thread and self.camera_thread.running:
 | 
			
		||||
            self.stop_camera()
 | 
			
		||||
        elif self.current_mode == "video" and self.video_thread and self.video_thread.running:
 | 
			
		||||
            self.stop_video()
 | 
			
		||||
        
 | 
			
		||||
        # 选择视频文件
 | 
			
		||||
        video_path, _ = QFileDialog.getOpenFileName(self, "选择视频文件", "", "视频文件 (*.mp4 *.avi *.mov *.mkv)")
 | 
			
		||||
        
 | 
			
		||||
        if video_path:
 | 
			
		||||
            if self.video_thread.load_video(video_path):
 | 
			
		||||
                self.current_mode = "video"
 | 
			
		||||
                self.start_video()
 | 
			
		||||
                self.camera_label.setText(f"正在播放视频: {os.path.basename(video_path)}")
 | 
			
		||||
            else:
 | 
			
		||||
                self.camera_label.setText("视频加载失败")
 | 
			
		||||
    
 | 
			
		||||
    def start_video(self):
 | 
			
		||||
        """开始播放视频"""
 | 
			
		||||
        if self.video_thread.start_video():
 | 
			
		||||
            self.open_video_button.setEnabled(False)
 | 
			
		||||
            self.stop_video_button.setEnabled(True)
 | 
			
		||||
            self.pause_video_button.setEnabled(True)
 | 
			
		||||
            self.pause_video_button.setText("暂停")
 | 
			
		||||
        else:
 | 
			
		||||
            self.camera_label.setText("视频播放失败")
 | 
			
		||||
    
 | 
			
		||||
    def pause_video(self):
 | 
			
		||||
        """暂停/继续视频"""
 | 
			
		||||
        if self.video_thread.pause_video():
 | 
			
		||||
            self.pause_video_button.setText("继续")
 | 
			
		||||
        else:
 | 
			
		||||
            self.pause_video_button.setText("暂停")
 | 
			
		||||
    
 | 
			
		||||
    def stop_video(self):
 | 
			
		||||
        """停止视频"""
 | 
			
		||||
        self.video_thread.stop_video()
 | 
			
		||||
        self.open_video_button.setEnabled(True)
 | 
			
		||||
        self.stop_video_button.setEnabled(False)
 | 
			
		||||
        self.pause_video_button.setEnabled(False)
 | 
			
		||||
        self.camera_label.setText("视频已停止")
 | 
			
		||||
        # 只在视频模式下清除标签内容
 | 
			
		||||
        if self.current_mode == "video":
 | 
			
		||||
            self.camera_label.clear()
 | 
			
		||||
        self.current_mode = "camera"
 | 
			
		||||
    
 | 
			
		||||
    def open_image_file(self):
 | 
			
		||||
        """打开图片文件"""
 | 
			
		||||
        # 停止当前模式
 | 
			
		||||
        if self.current_mode == "camera" and self.camera_thread and self.camera_thread.running:
 | 
			
		||||
            self.stop_camera()
 | 
			
		||||
        elif self.current_mode == "video" and self.video_thread and self.video_thread.running:
 | 
			
		||||
            self.stop_video()
 | 
			
		||||
        
 | 
			
		||||
        # 选择图片文件
 | 
			
		||||
        image_path, _ = QFileDialog.getOpenFileName(self, "选择图片文件", "", "图片文件 (*.jpg *.jpeg *.png *.bmp)")
 | 
			
		||||
        
 | 
			
		||||
        if image_path:
 | 
			
		||||
            self.current_mode = "image"
 | 
			
		||||
            try:
 | 
			
		||||
                # 读取图片 - 方法1: 使用cv2.imdecode处理中文路径
 | 
			
		||||
                image = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
 | 
			
		||||
                
 | 
			
		||||
                # 如果方法1失败,尝试方法2: 直接使用cv2.imread
 | 
			
		||||
                if image is None:
 | 
			
		||||
                    image = cv2.imread(image_path)
 | 
			
		||||
                    
 | 
			
		||||
                if image is not None:
 | 
			
		||||
                    print(f"成功加载图片: {image_path}, 尺寸: {image.shape}")
 | 
			
		||||
                    self.process_image(image)
 | 
			
		||||
                    # 不在这里设置文本,避免覆盖图片
 | 
			
		||||
                    # self.camera_label.setText(f"正在显示图片: {os.path.basename(image_path)}")
 | 
			
		||||
                else:
 | 
			
		||||
                    print(f"图片加载失败: {image_path}")
 | 
			
		||||
                    self.camera_label.setText("图片加载失败")
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                print(f"图片处理异常: {str(e)}")
 | 
			
		||||
                self.camera_label.setText(f"图片处理错误: {str(e)}")
 | 
			
		||||
    
 | 
			
		||||
    def process_image(self, image):
 | 
			
		||||
        """处理图片"""
 | 
			
		||||
        try:
 | 
			
		||||
            print(f"开始处理图片,图片尺寸: {image.shape}")
 | 
			
		||||
            self.current_frame = image.copy()
 | 
			
		||||
            
 | 
			
		||||
            # 进行车牌检测
 | 
			
		||||
            print("正在进行车牌检测...")
 | 
			
		||||
            self.detections = self.detector.detect_license_plates(image)
 | 
			
		||||
            print(f"检测到 {len(self.detections)} 个车牌")
 | 
			
		||||
            
 | 
			
		||||
            # 在图像上绘制检测结果
 | 
			
		||||
            print("正在绘制检测结果...")
 | 
			
		||||
            display_frame = self.draw_detections(image.copy())
 | 
			
		||||
            
 | 
			
		||||
            # 转换为Qt格式并显示
 | 
			
		||||
            print("正在显示图片...")
 | 
			
		||||
            self.display_frame(display_frame)
 | 
			
		||||
            
 | 
			
		||||
            # 更新右侧结果显示
 | 
			
		||||
            print("正在更新结果显示...")
 | 
			
		||||
            self.update_results_display()
 | 
			
		||||
            print("图片处理完成")
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            print(f"图片处理过程中出错: {str(e)}")
 | 
			
		||||
            import traceback
 | 
			
		||||
            traceback.print_exc()
 | 
			
		||||
    
 | 
			
		||||
    def process_frame(self, frame):
 | 
			
		||||
        """处理摄像头帧"""
 | 
			
		||||
        self.current_frame = frame.copy()
 | 
			
		||||
        
 | 
			
		||||
        # 进行车牌检测
 | 
			
		||||
        self.detections = self.detector.detect_license_plates(frame)
 | 
			
		||||
        # 先显示原始帧,保证视频流畅播放
 | 
			
		||||
        self.display_frame(frame)
 | 
			
		||||
        
 | 
			
		||||
        # 在图像上绘制检测结果
 | 
			
		||||
        display_frame = self.draw_detections(frame.copy())
 | 
			
		||||
        # 如果当前没有在处理识别任务,则开始新的识别任务
 | 
			
		||||
        if not self.is_processing:
 | 
			
		||||
            self.is_processing = True
 | 
			
		||||
            # 异步进行车牌检测和识别
 | 
			
		||||
            QTimer.singleShot(0, self.async_detect_and_update)
 | 
			
		||||
    
 | 
			
		||||
        # 转换为Qt格式并显示
 | 
			
		||||
        self.display_frame(display_frame)
 | 
			
		||||
    def async_detect_and_update(self):
 | 
			
		||||
        """异步进行车牌检测和识别"""
 | 
			
		||||
        if self.current_frame is None:
 | 
			
		||||
            self.is_processing = False  # 重置标志位
 | 
			
		||||
            return
 | 
			
		||||
            
 | 
			
		||||
        # 更新右侧结果显示
 | 
			
		||||
        self.update_results_display()
 | 
			
		||||
        try:
 | 
			
		||||
            # 进行车牌检测
 | 
			
		||||
            self.detections = self.detector.detect_license_plates(self.current_frame)
 | 
			
		||||
            
 | 
			
		||||
            # 在图像上绘制检测结果
 | 
			
		||||
            display_frame = self.draw_detections(self.current_frame.copy())
 | 
			
		||||
            
 | 
			
		||||
            # 更新显示帧(显示带检测结果的帧)
 | 
			
		||||
            # 无论是摄像头模式还是视频模式,都显示检测框
 | 
			
		||||
            self.display_frame(display_frame)
 | 
			
		||||
            
 | 
			
		||||
            # 更新右侧结果显示
 | 
			
		||||
            self.update_results_display()
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            print(f"异步检测和更新失败: {str(e)}")
 | 
			
		||||
            import traceback
 | 
			
		||||
            traceback.print_exc()
 | 
			
		||||
        finally:
 | 
			
		||||
            # 无论成功或失败,都要重置标志位
 | 
			
		||||
            self.is_processing = False
 | 
			
		||||
    
 | 
			
		||||
    def draw_detections(self, frame):
 | 
			
		||||
        """在图像上绘制检测结果"""
 | 
			
		||||
@@ -335,14 +582,96 @@ class MainWindow(QMainWindow):
 | 
			
		||||
    
 | 
			
		||||
    def display_frame(self, frame):
 | 
			
		||||
        """显示帧到界面"""
 | 
			
		||||
        rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
 | 
			
		||||
        h, w, ch = rgb_frame.shape
 | 
			
		||||
        bytes_per_line = ch * w
 | 
			
		||||
        qt_image = QImage(rgb_frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
 | 
			
		||||
        try:
 | 
			
		||||
            print(f"开始显示帧,帧尺寸: {frame.shape}")
 | 
			
		||||
            
 | 
			
		||||
        pixmap = QPixmap.fromImage(qt_image)
 | 
			
		||||
        scaled_pixmap = pixmap.scaled(self.camera_label.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation)
 | 
			
		||||
        self.camera_label.setPixmap(scaled_pixmap)
 | 
			
		||||
            # 方法1: 标准方法
 | 
			
		||||
            try:
 | 
			
		||||
                rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
 | 
			
		||||
                h, w, ch = rgb_frame.shape
 | 
			
		||||
                bytes_per_line = ch * w
 | 
			
		||||
                qt_image = QImage(rgb_frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
 | 
			
		||||
                
 | 
			
		||||
                print(f"方法1: 创建QImage,尺寸: {qt_image.width()}x{qt_image.height()}")
 | 
			
		||||
                if qt_image.isNull():
 | 
			
		||||
                    print("方法1: QImage为空,尝试方法2")
 | 
			
		||||
                    raise Exception("QImage为空")
 | 
			
		||||
                    
 | 
			
		||||
                pixmap = QPixmap.fromImage(qt_image)
 | 
			
		||||
                if pixmap.isNull():
 | 
			
		||||
                    print("方法1: QPixmap为空,尝试方法2")
 | 
			
		||||
                    raise Exception("QPixmap为空")
 | 
			
		||||
                    
 | 
			
		||||
                # 手动缩放图片以适应标签大小,保持宽高比
 | 
			
		||||
                scaled_pixmap = pixmap.scaled(self.camera_label.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation)
 | 
			
		||||
                self.camera_label.setPixmap(scaled_pixmap)
 | 
			
		||||
                print("方法1: 帧显示完成")
 | 
			
		||||
                return
 | 
			
		||||
            except Exception as e1:
 | 
			
		||||
                print(f"方法1失败: {str(e1)}")
 | 
			
		||||
            
 | 
			
		||||
            # 方法2: 使用imencode和imdecode
 | 
			
		||||
            try:
 | 
			
		||||
                print("尝试方法2: 使用imencode和imdecode")
 | 
			
		||||
                _, buffer = cv2.imencode('.jpg', frame)
 | 
			
		||||
                rgb_frame = cv2.imdecode(buffer, cv2.IMREAD_COLOR)
 | 
			
		||||
                rgb_frame = cv2.cvtColor(rgb_frame, cv2.COLOR_BGR2RGB)
 | 
			
		||||
                h, w, ch = rgb_frame.shape
 | 
			
		||||
                bytes_per_line = ch * w
 | 
			
		||||
                qt_image = QImage(rgb_frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
 | 
			
		||||
                
 | 
			
		||||
                print(f"方法2: 创建QImage,尺寸: {qt_image.width()}x{qt_image.height()}")
 | 
			
		||||
                if qt_image.isNull():
 | 
			
		||||
                    print("方法2: QImage为空")
 | 
			
		||||
                    raise Exception("QImage为空")
 | 
			
		||||
                    
 | 
			
		||||
                pixmap = QPixmap.fromImage(qt_image)
 | 
			
		||||
                if pixmap.isNull():
 | 
			
		||||
                    print("方法2: QPixmap为空")
 | 
			
		||||
                    raise Exception("QPixmap为空")
 | 
			
		||||
                    
 | 
			
		||||
                # 手动缩放图片以适应标签大小,保持宽高比
 | 
			
		||||
                scaled_pixmap = pixmap.scaled(self.camera_label.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation)
 | 
			
		||||
                self.camera_label.setPixmap(scaled_pixmap)
 | 
			
		||||
                print("方法2: 帧显示完成")
 | 
			
		||||
                return
 | 
			
		||||
            except Exception as e2:
 | 
			
		||||
                print(f"方法2失败: {str(e2)}")
 | 
			
		||||
            
 | 
			
		||||
            # 方法3: 直接使用QImage的构造函数
 | 
			
		||||
            try:
 | 
			
		||||
                print("尝试方法3: 直接使用QImage的构造函数")
 | 
			
		||||
                height, width, channel = frame.shape
 | 
			
		||||
                bytes_per_line = 3 * width
 | 
			
		||||
                q_image = QImage(frame.data, width, height, bytes_per_line, QImage.Format_BGR888)
 | 
			
		||||
                
 | 
			
		||||
                print(f"方法3: 创建QImage,尺寸: {q_image.width()}x{q_image.height()}")
 | 
			
		||||
                if q_image.isNull():
 | 
			
		||||
                    print("方法3: QImage为空")
 | 
			
		||||
                    raise Exception("QImage为空")
 | 
			
		||||
                    
 | 
			
		||||
                pixmap = QPixmap.fromImage(q_image)
 | 
			
		||||
                if pixmap.isNull():
 | 
			
		||||
                    print("方法3: QPixmap为空")
 | 
			
		||||
                    raise Exception("QPixmap为空")
 | 
			
		||||
                    
 | 
			
		||||
                # 手动缩放图片以适应标签大小,保持宽高比
 | 
			
		||||
                scaled_pixmap = pixmap.scaled(self.camera_label.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation)
 | 
			
		||||
                self.camera_label.setPixmap(scaled_pixmap)
 | 
			
		||||
                print("方法3: 帧显示完成")
 | 
			
		||||
                return
 | 
			
		||||
            except Exception as e3:
 | 
			
		||||
                print(f"方法3失败: {str(e3)}")
 | 
			
		||||
                
 | 
			
		||||
            # 所有方法都失败
 | 
			
		||||
            print("所有显示方法都失败")
 | 
			
		||||
            self.camera_label.setText("图片显示失败")
 | 
			
		||||
                
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            print(f"显示帧过程中出错: {str(e)}")
 | 
			
		||||
            import traceback
 | 
			
		||||
            traceback.print_exc()
 | 
			
		||||
            self.camera_label.setText(f"显示错误: {str(e)}")
 | 
			
		||||
    
 | 
			
		||||
    def update_results_display(self):
 | 
			
		||||
        """更新右侧结果显示"""
 | 
			
		||||
@@ -350,13 +679,8 @@ class MainWindow(QMainWindow):
 | 
			
		||||
        count = len(self.detections)
 | 
			
		||||
        self.count_label.setText(f"识别到的车牌数量: {count}")
 | 
			
		||||
        
 | 
			
		||||
        # 清除之前的结果
 | 
			
		||||
        for i in reversed(range(self.results_layout.count())):
 | 
			
		||||
            child = self.results_layout.itemAt(i).widget()
 | 
			
		||||
            if child:
 | 
			
		||||
                child.setParent(None)
 | 
			
		||||
        
 | 
			
		||||
        # 添加新的结果
 | 
			
		||||
        # 准备新的车牌结果列表
 | 
			
		||||
        new_plate_results = []
 | 
			
		||||
        for i, detection in enumerate(self.detections):
 | 
			
		||||
            # 矫正车牌图像
 | 
			
		||||
            corrected_image = self.correct_license_plate(detection)
 | 
			
		||||
@@ -364,15 +688,53 @@ class MainWindow(QMainWindow):
 | 
			
		||||
            # 获取车牌号,传入车牌类型信息
 | 
			
		||||
            plate_number = self.recognize_plate_number(corrected_image, detection['class_name'])
 | 
			
		||||
            
 | 
			
		||||
            # 创建车牌显示组件
 | 
			
		||||
            plate_widget = LicensePlateWidget(
 | 
			
		||||
                i + 1,
 | 
			
		||||
                detection['class_name'],
 | 
			
		||||
                corrected_image,
 | 
			
		||||
                plate_number
 | 
			
		||||
            )
 | 
			
		||||
            # 添加到新结果列表
 | 
			
		||||
            new_plate_results.append({
 | 
			
		||||
                'id': i + 1,
 | 
			
		||||
                'class_name': detection['class_name'],
 | 
			
		||||
                'corrected_image': corrected_image,
 | 
			
		||||
                'plate_number': plate_number
 | 
			
		||||
            })
 | 
			
		||||
        
 | 
			
		||||
            self.results_layout.addWidget(plate_widget)
 | 
			
		||||
        # 比较新旧结果是否相同
 | 
			
		||||
        results_changed = False
 | 
			
		||||
        if len(self.last_plate_results) != len(new_plate_results):
 | 
			
		||||
            results_changed = True
 | 
			
		||||
        else:
 | 
			
		||||
            for i in range(len(new_plate_results)):
 | 
			
		||||
                if i >= len(self.last_plate_results):
 | 
			
		||||
                    results_changed = True
 | 
			
		||||
                    break
 | 
			
		||||
                
 | 
			
		||||
                last_result = self.last_plate_results[i]
 | 
			
		||||
                new_result = new_plate_results[i]
 | 
			
		||||
                
 | 
			
		||||
                # 比较车牌类型和车牌号
 | 
			
		||||
                if (last_result['class_name'] != new_result['class_name'] or 
 | 
			
		||||
                    last_result['plate_number'] != new_result['plate_number']):
 | 
			
		||||
                    results_changed = True
 | 
			
		||||
                    break
 | 
			
		||||
        
 | 
			
		||||
        # 只有当结果发生变化时才更新显示
 | 
			
		||||
        if results_changed:
 | 
			
		||||
            # 清除之前的结果
 | 
			
		||||
            for i in reversed(range(self.results_layout.count())):
 | 
			
		||||
                child = self.results_layout.itemAt(i).widget()
 | 
			
		||||
                if child:
 | 
			
		||||
                    child.setParent(None)
 | 
			
		||||
            
 | 
			
		||||
            # 添加新的结果
 | 
			
		||||
            for result in new_plate_results:
 | 
			
		||||
                plate_widget = LicensePlateWidget(
 | 
			
		||||
                    result['id'],
 | 
			
		||||
                    result['class_name'],
 | 
			
		||||
                    result['corrected_image'],
 | 
			
		||||
                    result['plate_number']
 | 
			
		||||
                )
 | 
			
		||||
                self.results_layout.addWidget(plate_widget)
 | 
			
		||||
            
 | 
			
		||||
            # 更新存储的上一次结果
 | 
			
		||||
            self.last_plate_results = new_plate_results
 | 
			
		||||
    
 | 
			
		||||
    def correct_license_plate(self, detection):
 | 
			
		||||
        """矫正车牌图像"""
 | 
			
		||||
@@ -390,40 +752,69 @@ class MainWindow(QMainWindow):
 | 
			
		||||
        )
 | 
			
		||||
    
 | 
			
		||||
    def recognize_plate_number(self, corrected_image, class_name):
 | 
			
		||||
        """识别车牌号"""
 | 
			
		||||
        if corrected_image is None:
 | 
			
		||||
            return "识别失败"
 | 
			
		||||
         """识别车牌号"""
 | 
			
		||||
         if corrected_image is None:
 | 
			
		||||
             return "识别失败"
 | 
			
		||||
         
 | 
			
		||||
        try:
 | 
			
		||||
            # 预测函数(来自模块)
 | 
			
		||||
            # 函数名改成一样的了,所以不要修改这里了,想用哪个模块直接导入
 | 
			
		||||
            result = LPRNmodel_predict(corrected_image)
 | 
			
		||||
         try:
 | 
			
		||||
             # 根据当前选择的识别方法调用相应的函数
 | 
			
		||||
             if self.current_recognition_method == "CRNN":
 | 
			
		||||
                 from CRNN_part.crnn_interface import LPRNmodel_predict
 | 
			
		||||
             elif self.current_recognition_method == "LPRNET":
 | 
			
		||||
                 from lightCRNN_part.lightcrnn_interface import LPRNmodel_predict
 | 
			
		||||
             elif self.current_recognition_method == "OCR":
 | 
			
		||||
                 from OCR_part.ocr_interface import LPRNmodel_predict
 | 
			
		||||
             
 | 
			
		||||
            # 将字符列表转换为字符串,支持8位车牌号
 | 
			
		||||
            if isinstance(result, list) and len(result) >= 7:
 | 
			
		||||
                # 根据车牌类型决定显示位数
 | 
			
		||||
                if class_name == '绿牌' and len(result) >= 8:
 | 
			
		||||
                    # 绿牌显示8位,过滤掉空字符占位符
 | 
			
		||||
                    plate_chars = [char for char in result[:8] if char != '']
 | 
			
		||||
                    # 如果过滤后确实有8位,显示8位;否则显示7位
 | 
			
		||||
                    if len(plate_chars) == 8:
 | 
			
		||||
                        return ''.join(plate_chars)
 | 
			
		||||
                    else:
 | 
			
		||||
                        return ''.join(plate_chars[:7])
 | 
			
		||||
                else:
 | 
			
		||||
                    # 蓝牌或其他类型显示前7位,过滤掉空字符
 | 
			
		||||
                    plate_chars = [char for char in result[:7] if char != '']
 | 
			
		||||
                    return ''.join(plate_chars)
 | 
			
		||||
            else:
 | 
			
		||||
                return "识别失败"
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            print(f"车牌号识别失败: {e}")
 | 
			
		||||
            return "识别失败"
 | 
			
		||||
             # 预测函数(来自模块)
 | 
			
		||||
             result = LPRNmodel_predict(corrected_image)
 | 
			
		||||
             
 | 
			
		||||
             # 将字符列表转换为字符串,支持8位车牌号
 | 
			
		||||
             if isinstance(result, list) and len(result) >= 7:
 | 
			
		||||
                 # 根据车牌类型决定显示位数
 | 
			
		||||
                 if class_name == '绿牌' and len(result) >= 8:
 | 
			
		||||
                     # 绿牌显示8位,过滤掉空字符占位符
 | 
			
		||||
                     plate_chars = [char for char in result[:8] if char != '']
 | 
			
		||||
                     # 如果过滤后确实有8位,显示8位;否则显示7位
 | 
			
		||||
                     if len(plate_chars) == 8:
 | 
			
		||||
                         return ''.join(plate_chars)
 | 
			
		||||
                     else:
 | 
			
		||||
                         return ''.join(plate_chars[:7])
 | 
			
		||||
                 else:
 | 
			
		||||
                     # 蓝牌或其他类型显示前7位,过滤掉空字符
 | 
			
		||||
                     plate_chars = [char for char in result[:7] if char != '']
 | 
			
		||||
                     return ''.join(plate_chars)
 | 
			
		||||
             else:
 | 
			
		||||
                 return "识别失败"
 | 
			
		||||
         except Exception as e:
 | 
			
		||||
             print(f"车牌号识别失败: {e}")
 | 
			
		||||
             return "识别失败"
 | 
			
		||||
    
 | 
			
		||||
    def change_recognition_method(self, method):
 | 
			
		||||
         """切换识别方法"""
 | 
			
		||||
         self.current_recognition_method = method
 | 
			
		||||
         self.current_method_label.setText(f"当前识别方法: {method}")
 | 
			
		||||
         
 | 
			
		||||
         # 初始化对应的模型
 | 
			
		||||
         if method == "CRNN":
 | 
			
		||||
             from CRNN_part.crnn_interface import LPRNinitialize_model
 | 
			
		||||
             LPRNinitialize_model()
 | 
			
		||||
         elif method == "LPRNET":
 | 
			
		||||
             from lightCRNN_part.lightcrnn_interface import LPRNinitialize_model
 | 
			
		||||
             LPRNinitialize_model()
 | 
			
		||||
         elif method == "OCR":
 | 
			
		||||
             from OCR_part.ocr_interface import LPRNinitialize_model
 | 
			
		||||
             LPRNinitialize_model()
 | 
			
		||||
         
 | 
			
		||||
         # 如果当前有显示的帧,重新处理以更新识别结果
 | 
			
		||||
         if self.current_frame is not None:
 | 
			
		||||
             self.process_frame(self.current_frame)
 | 
			
		||||
    
 | 
			
		||||
    def closeEvent(self, event):
 | 
			
		||||
        """窗口关闭事件"""
 | 
			
		||||
        if self.camera_thread:
 | 
			
		||||
        if self.camera_thread and self.camera_thread.running:
 | 
			
		||||
            self.camera_thread.stop_camera()
 | 
			
		||||
        if self.video_thread and self.video_thread.running:
 | 
			
		||||
            self.video_thread.stop_video()
 | 
			
		||||
        event.accept()
 | 
			
		||||
 | 
			
		||||
def main():
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										100
									
								
								test_lpr_real_images.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										100
									
								
								test_lpr_real_images.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,100 @@
 | 
			
		||||
#!/usr/bin/env python
 | 
			
		||||
# -*- coding: utf-8 -*-
 | 
			
		||||
"""
 | 
			
		||||
LPRNet接口真实图片测试脚本
 | 
			
		||||
测试LPRNET_part目录下的真实车牌图片
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
import cv2
 | 
			
		||||
import numpy as np
 | 
			
		||||
import os
 | 
			
		||||
from LPRNET_part.lpr_interface import LPRNinitialize_model, LPRNmodel_predict
 | 
			
		||||
 | 
			
		||||
def test_real_images():
 | 
			
		||||
    """
 | 
			
		||||
    测试LPRNET_part目录下的真实车牌图片
 | 
			
		||||
    """
 | 
			
		||||
    print("=== LPRNet真实图片测试 ===")
 | 
			
		||||
    
 | 
			
		||||
    # 初始化模型
 | 
			
		||||
    print("1. 初始化LPRNet模型...")
 | 
			
		||||
    success = LPRNinitialize_model()
 | 
			
		||||
    if not success:
 | 
			
		||||
        print("模型初始化失败!")
 | 
			
		||||
        return
 | 
			
		||||
    
 | 
			
		||||
    # 获取LPRNET_part目录下的图片文件
 | 
			
		||||
    lprnet_dir = "LPRNET_part"
 | 
			
		||||
    image_files = []
 | 
			
		||||
    
 | 
			
		||||
    if os.path.exists(lprnet_dir):
 | 
			
		||||
        for file in os.listdir(lprnet_dir):
 | 
			
		||||
            if file.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp')):
 | 
			
		||||
                image_files.append(os.path.join(lprnet_dir, file))
 | 
			
		||||
    
 | 
			
		||||
    if not image_files:
 | 
			
		||||
        print("未找到图片文件!")
 | 
			
		||||
        return
 | 
			
		||||
    
 | 
			
		||||
    print(f"2. 找到 {len(image_files)} 个图片文件")
 | 
			
		||||
    
 | 
			
		||||
    # 测试每个图片
 | 
			
		||||
    for i, image_path in enumerate(image_files, 1):
 | 
			
		||||
        print(f"\n--- 测试图片 {i}: {os.path.basename(image_path)} ---")
 | 
			
		||||
        
 | 
			
		||||
        try:
 | 
			
		||||
            # 使用支持中文路径的方式读取图片
 | 
			
		||||
            image = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
 | 
			
		||||
            
 | 
			
		||||
            if image is None:
 | 
			
		||||
                print(f"无法读取图片: {image_path}")
 | 
			
		||||
                continue
 | 
			
		||||
            
 | 
			
		||||
            print(f"图片尺寸: {image.shape}")
 | 
			
		||||
            
 | 
			
		||||
            # 进行预测
 | 
			
		||||
            result = LPRNmodel_predict(image)
 | 
			
		||||
            print(f"识别结果: {result}")
 | 
			
		||||
            print(f"识别车牌号: {''.join(result)}")
 | 
			
		||||
            
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            print(f"处理图片 {image_path} 时出错: {e}")
 | 
			
		||||
            import traceback
 | 
			
		||||
            traceback.print_exc()
 | 
			
		||||
    
 | 
			
		||||
    print("\n=== 测试完成 ===")
 | 
			
		||||
 | 
			
		||||
def test_image_loading():
 | 
			
		||||
    """
 | 
			
		||||
    测试图片加载方式
 | 
			
		||||
    """
 | 
			
		||||
    print("\n=== 图片加载测试 ===")
 | 
			
		||||
    
 | 
			
		||||
    lprnet_dir = "LPRNET_part"
 | 
			
		||||
    
 | 
			
		||||
    if os.path.exists(lprnet_dir):
 | 
			
		||||
        for file in os.listdir(lprnet_dir):
 | 
			
		||||
            if file.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp')):
 | 
			
		||||
                image_path = os.path.join(lprnet_dir, file)
 | 
			
		||||
                print(f"\n测试文件: {file}")
 | 
			
		||||
                
 | 
			
		||||
                # 方法1: 普通cv2.imread
 | 
			
		||||
                img1 = cv2.imread(image_path)
 | 
			
		||||
                print(f"cv2.imread结果: {img1 is not None}")
 | 
			
		||||
                
 | 
			
		||||
                # 方法2: 支持中文路径的方式
 | 
			
		||||
                try:
 | 
			
		||||
                    img2 = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
 | 
			
		||||
                    # img2 = cv2.resize(img2,(128,48))
 | 
			
		||||
                    print(f"cv2.imdecode结果: {img2 is not None}")
 | 
			
		||||
                    if img2 is not None:
 | 
			
		||||
                        print(f"图片尺寸: {img2.shape}")
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    print(f"cv2.imdecode失败: {e}")
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    # 首先测试图片加载
 | 
			
		||||
    test_image_loading()
 | 
			
		||||
    
 | 
			
		||||
    # 然后测试完整的识别流程
 | 
			
		||||
    test_real_images()
 | 
			
		||||
		Reference in New Issue
	
	Block a user