更新接口
| 
		 Before Width: | Height: | Size: 3.8 KiB After Width: | Height: | Size: 3.8 KiB  | 
| 
		 Before Width: | Height: | Size: 3.0 KiB After Width: | Height: | Size: 3.0 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								LPRNET_part/ets/6ce2ec7dbed6cf3c8403abe2683c57e5.jpg
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 4.0 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								LPRNET_part/ets/c11304d10bcd47911e458398d1ea445d.jpg
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 7.3 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								LPRNET_part/ets/c6ab0fbcfb2b6fbe15c5b3eb9806a28b.jpg
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 64 KiB  | 
@@ -1,3 +1,4 @@
 | 
			
		||||
# 导入必要的库
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
import cv2
 | 
			
		||||
@@ -11,6 +12,7 @@ from PIL import Image
 | 
			
		||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
 | 
			
		||||
 | 
			
		||||
# LPRNet字符集定义(与训练时保持一致)
 | 
			
		||||
# 包含中国省份简称、数字、字母和特殊字符
 | 
			
		||||
CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
 | 
			
		||||
         '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
 | 
			
		||||
         '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新',
 | 
			
		||||
@@ -19,84 +21,115 @@ CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
 | 
			
		||||
         'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
 | 
			
		||||
         'W', 'X', 'Y', 'Z', 'I', 'O', '-']
 | 
			
		||||
 | 
			
		||||
# 创建字符到索引的映射字典
 | 
			
		||||
CHARS_DICT = {char: i for i, char in enumerate(CHARS)}
 | 
			
		||||
 | 
			
		||||
# 简化的LPRNet模型定义
 | 
			
		||||
# 简化的LPRNet模型定义 - 基础卷积块
 | 
			
		||||
class small_basic_block(nn.Module):
 | 
			
		||||
    def __init__(self, ch_in, ch_out):
 | 
			
		||||
        super(small_basic_block, self).__init__()
 | 
			
		||||
        # 定义一个小的基本卷积块,包含四个卷积层
 | 
			
		||||
        self.block = nn.Sequential(
 | 
			
		||||
            # 1x1卷积,降低通道数
 | 
			
		||||
            nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),
 | 
			
		||||
            nn.ReLU(),
 | 
			
		||||
            # 3x1卷积,处理水平特征
 | 
			
		||||
            nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),
 | 
			
		||||
            nn.ReLU(),
 | 
			
		||||
            # 1x3卷积,处理垂直特征
 | 
			
		||||
            nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),
 | 
			
		||||
            nn.ReLU(),
 | 
			
		||||
            # 1x1卷积,恢复通道数
 | 
			
		||||
            nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        return self.block(x)
 | 
			
		||||
 | 
			
		||||
# LPRNet模型定义 - 车牌识别网络
 | 
			
		||||
class LPRNet(nn.Module):
 | 
			
		||||
    def __init__(self, lpr_max_len, phase, class_num, dropout_rate):
 | 
			
		||||
        super(LPRNet, self).__init__()
 | 
			
		||||
        self.phase = phase
 | 
			
		||||
        self.lpr_max_len = lpr_max_len
 | 
			
		||||
        self.class_num = class_num
 | 
			
		||||
        
 | 
			
		||||
        # 定义主干网络
 | 
			
		||||
        self.backbone = nn.Sequential(
 | 
			
		||||
            # 初始卷积层
 | 
			
		||||
            nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0
 | 
			
		||||
            nn.BatchNorm2d(num_features=64),
 | 
			
		||||
            nn.ReLU(),  # 2
 | 
			
		||||
            # 最大池化层
 | 
			
		||||
            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),
 | 
			
		||||
            # 第一个基本块
 | 
			
		||||
            small_basic_block(ch_in=64, ch_out=128),    # *** 4 ***
 | 
			
		||||
            nn.BatchNorm2d(num_features=128),
 | 
			
		||||
            nn.ReLU(),  # 6
 | 
			
		||||
            # 第二个池化层
 | 
			
		||||
            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),
 | 
			
		||||
            # 第二个基本块
 | 
			
		||||
            small_basic_block(ch_in=64, ch_out=256),   # 8
 | 
			
		||||
            nn.BatchNorm2d(num_features=256),
 | 
			
		||||
            nn.ReLU(),  # 10
 | 
			
		||||
            # 第三个基本块
 | 
			
		||||
            small_basic_block(ch_in=256, ch_out=256),   # *** 11 ***
 | 
			
		||||
            nn.BatchNorm2d(num_features=256),
 | 
			
		||||
            nn.ReLU(),  # 13
 | 
			
		||||
            # 第三个池化层
 | 
			
		||||
            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)),  # 14
 | 
			
		||||
            # Dropout层,防止过拟合
 | 
			
		||||
            nn.Dropout(dropout_rate),
 | 
			
		||||
            # 特征提取卷积层
 | 
			
		||||
            nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1), # 16
 | 
			
		||||
            nn.BatchNorm2d(num_features=256),
 | 
			
		||||
            nn.ReLU(),  # 18
 | 
			
		||||
            # 第二个Dropout层
 | 
			
		||||
            nn.Dropout(dropout_rate),
 | 
			
		||||
            # 分类卷积层
 | 
			
		||||
            nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # 20
 | 
			
		||||
            nn.BatchNorm2d(num_features=class_num),
 | 
			
		||||
            nn.ReLU(),  # 22
 | 
			
		||||
        )
 | 
			
		||||
        
 | 
			
		||||
        # 定义容器层,用于融合全局上下文信息
 | 
			
		||||
        self.container = nn.Sequential(
 | 
			
		||||
            nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1,1), stride=(1,1)),
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        # 保存中间特征
 | 
			
		||||
        keep_features = list()
 | 
			
		||||
        for i, layer in enumerate(self.backbone.children()):
 | 
			
		||||
            x = layer(x)
 | 
			
		||||
            # 保存特定层的输出特征
 | 
			
		||||
            if i in [2, 6, 13, 22]: # [2, 4, 8, 11, 22]
 | 
			
		||||
                keep_features.append(x)
 | 
			
		||||
 | 
			
		||||
        # 处理全局上下文信息
 | 
			
		||||
        global_context = list()
 | 
			
		||||
        for i, f in enumerate(keep_features):
 | 
			
		||||
            # 对不同层的特征进行不同尺度的平均池化
 | 
			
		||||
            if i in [0, 1]:
 | 
			
		||||
                f = nn.AvgPool2d(kernel_size=5, stride=5)(f)
 | 
			
		||||
            if i in [2]:
 | 
			
		||||
                f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)
 | 
			
		||||
            # 对特征进行归一化处理
 | 
			
		||||
            f_pow = torch.pow(f, 2)
 | 
			
		||||
            f_mean = torch.mean(f_pow)
 | 
			
		||||
            f = torch.div(f, f_mean)
 | 
			
		||||
            global_context.append(f)
 | 
			
		||||
 | 
			
		||||
        # 拼接全局上下文特征
 | 
			
		||||
        x = torch.cat(global_context, 1)
 | 
			
		||||
        # 通过容器层处理
 | 
			
		||||
        x = self.container(x)
 | 
			
		||||
        # 对序列维度进行平均,得到最终输出
 | 
			
		||||
        logits = torch.mean(x, dim=2)
 | 
			
		||||
 | 
			
		||||
        return logits
 | 
			
		||||
 | 
			
		||||
# LPRNet推理类
 | 
			
		||||
class LPRNetInference:
 | 
			
		||||
    def __init__(self, model_path=None, img_size=[94, 24], lpr_max_len=8, dropout_rate=0.5):
 | 
			
		||||
        """
 | 
			
		||||
@@ -109,6 +142,7 @@ class LPRNetInference:
 | 
			
		||||
        """
 | 
			
		||||
        self.img_size = img_size
 | 
			
		||||
        self.lpr_max_len = lpr_max_len
 | 
			
		||||
        # 检测是否有可用的CUDA设备
 | 
			
		||||
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 | 
			
		||||
        
 | 
			
		||||
        # 设置默认模型路径
 | 
			
		||||
@@ -130,6 +164,7 @@ class LPRNetInference:
 | 
			
		||||
        else:
 | 
			
		||||
            print(f"Warning: 模型文件不存在或未指定: {model_path}. 使用随机权重.")
 | 
			
		||||
        
 | 
			
		||||
        # 将模型移动到指定设备并设置为评估模式
 | 
			
		||||
        self.model.to(self.device)
 | 
			
		||||
        self.model.eval()
 | 
			
		||||
        
 | 
			
		||||
@@ -164,9 +199,11 @@ class LPRNetInference:
 | 
			
		||||
            image_array = cv2.resize(image_array, tuple(self.img_size))
 | 
			
		||||
        
 | 
			
		||||
        # 使用与训练时相同的预处理方式
 | 
			
		||||
        # 归一化处理:减去127.5并乘以0.0078125,将像素值从[0,255]映射到[-1,1]
 | 
			
		||||
        image_array = image_array.astype('float32')
 | 
			
		||||
        image_array -= 127.5
 | 
			
		||||
        image_array *= 0.0078125
 | 
			
		||||
        # 调整维度顺序从HWC到CHW
 | 
			
		||||
        image_array = np.transpose(image_array, (2, 0, 1))  # HWC -> CHW
 | 
			
		||||
        
 | 
			
		||||
        # 转换为tensor并添加batch维度
 | 
			
		||||
@@ -186,7 +223,7 @@ class LPRNetInference:
 | 
			
		||||
        prebs = logits.cpu().detach().numpy()
 | 
			
		||||
        preb = prebs[0, :, :]  # 取第一个batch [num_classes, sequence_length]
 | 
			
		||||
        
 | 
			
		||||
        # 贪婪解码:对每个时间步选择最大概率的字符
 | 
			
		||||
        # 贪婪解码: 对每个时间步选择最大概率的字符
 | 
			
		||||
        preb_label = []
 | 
			
		||||
        for j in range(preb.shape[1]):  # 遍历每个时间步
 | 
			
		||||
            preb_label.append(np.argmax(preb[:, j], axis=0))
 | 
			
		||||
@@ -248,7 +285,7 @@ class LPRNetInference:
 | 
			
		||||
            print(f"预测图像失败: {e}")
 | 
			
		||||
            return None, 0.0
 | 
			
		||||
 | 
			
		||||
# 全局变量
 | 
			
		||||
# 全局变量,用于存储模型实例
 | 
			
		||||
lpr_model = None
 | 
			
		||||
 | 
			
		||||
def LPRNinitialize_model():
 | 
			
		||||
@@ -295,6 +332,9 @@ def LPRNmodel_predict(image_array):
 | 
			
		||||
        return ['待', '识', '别', '0', '0', '0', '0', '0']
 | 
			
		||||
    
 | 
			
		||||
    try:
 | 
			
		||||
        # 使用OpenCV调整图像大小到模型要求的尺寸
 | 
			
		||||
        image_array = cv2.resize(image_array, (128, 48))
 | 
			
		||||
        print(f"666999图片尺寸: {image_array.shape}")
 | 
			
		||||
        # 预测车牌号
 | 
			
		||||
        predicted_text, confidence = lpr_model.predict(image_array)
 | 
			
		||||
        
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										1
									
								
								main.py
									
									
									
									
									
								
							
							
						
						@@ -11,7 +11,6 @@ from yolopart.detector import LicensePlateYOLO
 | 
			
		||||
#选择使用哪个模块
 | 
			
		||||
# from LPRNET_part.lpr_interface import LPRNmodel_predict
 | 
			
		||||
# from LPRNET_part.lpr_interface import LPRNinitialize_model
 | 
			
		||||
 | 
			
		||||
#使用OCR
 | 
			
		||||
# from OCR_part.ocr_interface import LPRNmodel_predict
 | 
			
		||||
# from OCR_part.ocr_interface import LPRNinitialize_model
 | 
			
		||||
 
 | 
			
		||||
@@ -85,6 +85,7 @@ def test_image_loading():
 | 
			
		||||
                # 方法2: 支持中文路径的方式
 | 
			
		||||
                try:
 | 
			
		||||
                    img2 = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
 | 
			
		||||
                    # img2 = cv2.resize(img2,(128,48))
 | 
			
		||||
                    print(f"cv2.imdecode结果: {img2 is not None}")
 | 
			
		||||
                    if img2 is not None:
 | 
			
		||||
                        print(f"图片尺寸: {img2.shape}")
 | 
			
		||||
 
 | 
			
		||||