更新接口

This commit is contained in:
2025-10-18 18:21:30 +08:00
parent 09c3117f12
commit cf60d96066
4 changed files with 663 additions and 330 deletions

View File

@@ -1,328 +0,0 @@
import torch
import torch.nn as nn
import cv2
import numpy as np
import os
import sys
from torch.autograd import Variable
from PIL import Image
# 添加父目录到路径,以便导入模型和数据加载器
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# LPRNet字符集定义与训练时保持一致
CHARS = ['', '', '', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '', '',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',
'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z', 'I', 'O', '-']
CHARS_DICT = {char: i for i, char in enumerate(CHARS)}
# 简化的LPRNet模型定义
class small_basic_block(nn.Module):
def __init__(self, ch_in, ch_out):
super(small_basic_block, self).__init__()
self.block = nn.Sequential(
nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),
nn.ReLU(),
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),
nn.ReLU(),
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),
nn.ReLU(),
nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),
)
def forward(self, x):
return self.block(x)
class LPRNet(nn.Module):
def __init__(self, lpr_max_len, phase, class_num, dropout_rate):
super(LPRNet, self).__init__()
self.phase = phase
self.lpr_max_len = lpr_max_len
self.class_num = class_num
self.backbone = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0
nn.BatchNorm2d(num_features=64),
nn.ReLU(), # 2
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),
small_basic_block(ch_in=64, ch_out=128), # *** 4 ***
nn.BatchNorm2d(num_features=128),
nn.ReLU(), # 6
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),
small_basic_block(ch_in=64, ch_out=256), # 8
nn.BatchNorm2d(num_features=256),
nn.ReLU(), # 10
small_basic_block(ch_in=256, ch_out=256), # *** 11 ***
nn.BatchNorm2d(num_features=256),
nn.ReLU(), # 13
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)), # 14
nn.Dropout(dropout_rate),
nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1), # 16
nn.BatchNorm2d(num_features=256),
nn.ReLU(), # 18
nn.Dropout(dropout_rate),
nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # 20
nn.BatchNorm2d(num_features=class_num),
nn.ReLU(), # 22
)
self.container = nn.Sequential(
nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1,1), stride=(1,1)),
)
def forward(self, x):
keep_features = list()
for i, layer in enumerate(self.backbone.children()):
x = layer(x)
if i in [2, 6, 13, 22]: # [2, 4, 8, 11, 22]
keep_features.append(x)
global_context = list()
for i, f in enumerate(keep_features):
if i in [0, 1]:
f = nn.AvgPool2d(kernel_size=5, stride=5)(f)
if i in [2]:
f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)
f_pow = torch.pow(f, 2)
f_mean = torch.mean(f_pow)
f = torch.div(f, f_mean)
global_context.append(f)
x = torch.cat(global_context, 1)
x = self.container(x)
logits = torch.mean(x, dim=2)
return logits
class LPRNetInference:
def __init__(self, model_path=None, img_size=[94, 24], lpr_max_len=8, dropout_rate=0.5):
"""
初始化LPRNet推理类
Args:
model_path: 训练好的模型权重文件路径
img_size: 输入图像尺寸 [width, height]
lpr_max_len: 车牌最大长度
dropout_rate: dropout率
"""
self.img_size = img_size
self.lpr_max_len = lpr_max_len
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 设置默认模型路径
if model_path is None:
current_dir = os.path.dirname(os.path.abspath(__file__))
model_path = os.path.join(current_dir, 'LPRNet__iteration_74000.pth')
# 初始化模型
self.model = LPRNet(lpr_max_len=lpr_max_len, phase=False, class_num=len(CHARS), dropout_rate=dropout_rate)
# 加载模型权重
if model_path and os.path.exists(model_path):
print(f"Loading LPRNet model from {model_path}")
try:
self.model.load_state_dict(torch.load(model_path, map_location=self.device))
print("LPRNet模型权重加载成功")
except Exception as e:
print(f"Warning: 加载模型权重失败: {e}. 使用随机权重.")
else:
print(f"Warning: 模型文件不存在或未指定: {model_path}. 使用随机权重.")
self.model.to(self.device)
self.model.eval()
print(f"LPRNet模型加载完成设备: {self.device}")
print(f"模型参数数量: {sum(p.numel() for p in self.model.parameters()):,}")
def preprocess_image(self, image_array):
"""
预处理图像数组 - 使用与训练时相同的预处理方式
Args:
image_array: numpy数组格式的图像 (H, W, C)
Returns:
preprocessed_image: 预处理后的图像tensor
"""
if image_array is None:
raise ValueError("Input image is None")
# 确保图像是numpy数组
if not isinstance(image_array, np.ndarray):
raise ValueError("Input must be numpy array")
# 检查图像维度
if len(image_array.shape) != 3:
raise ValueError(f"Expected 3D image array, got {len(image_array.shape)}D")
height, width, channels = image_array.shape
if channels != 3:
raise ValueError(f"Expected 3 channels, got {channels}")
# 调整图像尺寸到模型要求的尺寸
if height != self.img_size[1] or width != self.img_size[0]:
image_array = cv2.resize(image_array, tuple(self.img_size))
# 使用与训练时相同的预处理方式
image_array = image_array.astype('float32')
image_array -= 127.5
image_array *= 0.0078125
image_array = np.transpose(image_array, (2, 0, 1)) # HWC -> CHW
# 转换为tensor并添加batch维度
image_tensor = torch.from_numpy(image_array).unsqueeze(0)
return image_tensor
def decode_prediction(self, logits):
"""
解码模型预测结果 - 使用正确的CTC贪婪解码
Args:
logits: 模型输出的logits [batch_size, num_classes, sequence_length]
Returns:
predicted_text: 预测的车牌号码
"""
# 转换为numpy进行处理
prebs = logits.cpu().detach().numpy()
preb = prebs[0, :, :] # 取第一个batch [num_classes, sequence_length]
# 贪婪解码:对每个时间步选择最大概率的字符
preb_label = []
for j in range(preb.shape[1]): # 遍历每个时间步
preb_label.append(np.argmax(preb[:, j], axis=0))
# CTC解码去除重复字符和空白字符
no_repeat_blank_label = []
pre_c = preb_label[0]
# 处理第一个字符
if pre_c != len(CHARS) - 1: # 不是空白字符
no_repeat_blank_label.append(pre_c)
# 处理后续字符
for c in preb_label:
if (pre_c == c) or (c == len(CHARS) - 1): # 重复字符或空白字符
if c == len(CHARS) - 1:
pre_c = c
continue
no_repeat_blank_label.append(c)
pre_c = c
# 转换为字符
decoded_chars = [CHARS[idx] for idx in no_repeat_blank_label]
return ''.join(decoded_chars)
def predict(self, image_array):
"""
预测单张图像的车牌号码
Args:
image_array: numpy数组格式的图像
Returns:
prediction: 预测的车牌号码
confidence: 预测置信度
"""
try:
# 预处理图像
image = self.preprocess_image(image_array)
if image is None:
return None, 0.0
image = image.to(self.device)
# 模型推理
with torch.no_grad():
logits = self.model(image)
# logits shape: [batch_size, class_num, sequence_length]
# 计算置信度使用softmax后的最大概率平均值
probs = torch.softmax(logits, dim=1)
max_probs = torch.max(probs, dim=1)[0]
confidence = torch.mean(max_probs).item()
# 解码预测结果
prediction = self.decode_prediction(logits)
return prediction, confidence
except Exception as e:
print(f"预测图像失败: {e}")
return None, 0.0
# 全局变量
lpr_model = None
def LPRNinitialize_model():
"""
初始化LPRNet模型
返回:
bool: 初始化是否成功
"""
global lpr_model
try:
# 模型权重文件路径
model_path = os.path.join(os.path.dirname(__file__), 'LPRNet__iteration_74000.pth')
# 创建推理对象
lpr_model = LPRNetInference(model_path)
print("LPRNet模型初始化完成")
return True
except Exception as e:
print(f"LPRNet模型初始化失败: {e}")
import traceback
traceback.print_exc()
return False
def LPRNmodel_predict(image_array):
"""
LPRNet车牌号识别接口函数
参数:
image_array: numpy数组格式的车牌图像已经过矫正处理
返回:
list: 包含最多8个字符的列表代表车牌号的每个字符
例如: ['', 'A', '1', '2', '3', '4', '5'] (蓝牌7位)
['', 'A', 'D', '1', '2', '3', '4', '5'] (绿牌8位)
"""
global lpr_model
if lpr_model is None:
print("LPRNet模型未初始化请先调用LPRNinitialize_model()")
return ['', '', '', '0', '0', '0', '0', '0']
try:
# 预测车牌号
predicted_text, confidence = lpr_model.predict(image_array)
if predicted_text is None:
print("LPRNet识别失败")
return ['', '', '', '', '0', '0', '0', '0']
print(f"LPRNet识别结果: {predicted_text}, 置信度: {confidence:.3f}")
# 将字符串转换为字符列表
char_list = list(predicted_text)
# 确保返回至少7个字符最多8个字符
if len(char_list) < 7:
# 如果识别结果少于7个字符用'0'补齐到7位
char_list.extend(['0'] * (7 - len(char_list)))
elif len(char_list) > 8:
# 如果识别结果多于8个字符截取前8个
char_list = char_list[:8]
# 如果是7位补齐到8位以保持接口一致性第8位用空字符或占位符
if len(char_list) == 7:
char_list.append('') # 添加空字符作为第8位占位符
return char_list
except Exception as e:
print(f"LPRNet识别失败: {e}")
import traceback
traceback.print_exc()
return ['', '', '', '', '0', '0', '0', '0']

251
gate_control.py Normal file
View File

@@ -0,0 +1,251 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
道闸控制模块
负责与Hi3861设备通信控制道闸开关
"""
import socket
import json
import time
from datetime import datetime, timedelta
from PyQt5.QtCore import QObject, pyqtSignal, QThread
class GateControlThread(QThread):
"""道闸控制线程,用于异步发送命令"""
command_sent = pyqtSignal(str, bool) # 信号:命令内容,是否成功
def __init__(self, ip, port, command):
super().__init__()
self.ip = ip
self.port = port
self.command = command
def run(self):
"""发送命令到Hi3861设备"""
try:
# 创建UDP socket
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# 发送命令
json_command = json.dumps(self.command, ensure_ascii=False)
sock.sendto(json_command.encode('utf-8'), (self.ip, self.port))
# 发出成功信号
self.command_sent.emit(json_command, True)
except Exception as e:
# 发出失败信号
self.command_sent.emit(f"发送失败: {e}", False)
finally:
sock.close()
class GateController(QObject):
"""道闸控制器"""
# 信号
log_message = pyqtSignal(str) # 日志消息
gate_opened = pyqtSignal(str) # 道闸打开信号,附带车牌号
def __init__(self, ip="192.168.43.12", port=8081):
super().__init__()
self.ip = ip
self.port = port
self.last_pass_times = {} # 记录车牌上次通过时间
self.thread_pool = [] # 线程池
def send_command(self, cmd, text=""):
"""
发送命令到道闸
参数:
cmd: 命令类型 (1-4)
text: 显示文本
返回:
bool: 是否发送成功
"""
# 创建JSON命令
command = {
"cmd": cmd,
"text": text
}
# 创建并启动线程发送命令
thread = GateControlThread(self.ip, self.port, command)
thread.command_sent.connect(self.on_command_sent)
thread.start()
self.thread_pool.append(thread)
# 记录日志
cmd_desc = {
1: "自动开闸(10秒后关闭)",
2: "手动开闸",
3: "手动关闸",
4: "仅显示信息"
}
self.log_message.emit(f"发送命令: {cmd_desc.get(cmd, '未知命令')} - {text}")
return True
def on_command_sent(self, message, success):
"""命令发送结果处理"""
if success:
self.log_message.emit(f"命令发送成功: {message}")
else:
self.log_message.emit(f"命令发送失败: {message}")
def auto_open_gate(self, plate_number):
"""
自动开闸(检测到白名单车牌时调用)
参数:
plate_number: 车牌号
"""
# 获取当前时间
current_time = datetime.now()
time_diff_str = ""
# 检查是否是第一次通行
if plate_number in self.last_pass_times:
# 第二次或更多次通行,计算时间差
last_time = self.last_pass_times[plate_number]
time_diff = current_time - last_time
# 格式化时间差
total_seconds = int(time_diff.total_seconds())
minutes = total_seconds // 60
seconds = total_seconds % 60
if minutes > 0:
time_diff_str = f" {minutes}min{seconds}sec"
else:
time_diff_str = f" {seconds}sec"
# 计算时间差后清空之前记录的时间点
del self.last_pass_times[plate_number]
log_msg = f"检测到白名单车牌: {plate_number},自动开闸{time_diff_str},已清空时间记录"
else:
# 第一次通行,只记录时间,不计算时间差
self.last_pass_times[plate_number] = current_time
log_msg = f"检测到白名单车牌: {plate_number},首次通行,已记录时间"
# 发送开闸命令
display_text = f"{plate_number} 通行{time_diff_str}"
self.send_command(1, display_text)
# 发出信号
self.gate_opened.emit(plate_number)
# 记录日志
self.log_message.emit(log_msg)
def manual_open_gate(self):
"""手动开闸"""
self.send_command(2, "")
self.log_message.emit("手动开闸")
def manual_close_gate(self):
"""手动关闸"""
self.send_command(3, "")
self.log_message.emit("手动关闸")
def display_message(self, text):
"""仅显示信息,不控制道闸"""
self.send_command(4, text)
self.log_message.emit(f"显示信息: {text}")
def deny_access(self, plate_number):
"""
拒绝通行(检测到非白名单车牌时调用)
参数:
plate_number: 车牌号
"""
self.send_command(4, f"{plate_number} 禁止通行")
self.log_message.emit(f"检测到非白名单车牌: {plate_number},拒绝通行")
class WhitelistManager(QObject):
"""白名单管理器"""
# 信号
whitelist_changed = pyqtSignal(list) # 白名单变更信号
def __init__(self):
super().__init__()
self.whitelist = [] # 白名单车牌列表
def add_plate(self, plate_number):
"""
添加车牌到白名单
参数:
plate_number: 车牌号
返回:
bool: 是否添加成功
"""
if not plate_number or plate_number in self.whitelist:
return False
self.whitelist.append(plate_number)
self.whitelist_changed.emit(self.whitelist.copy())
return True
def remove_plate(self, plate_number):
"""
从白名单移除车牌
参数:
plate_number: 车牌号
返回:
bool: 是否移除成功
"""
if plate_number in self.whitelist:
self.whitelist.remove(plate_number)
self.whitelist_changed.emit(self.whitelist.copy())
return True
return False
def edit_plate(self, old_plate, new_plate):
"""
编辑白名单中的车牌
参数:
old_plate: 原车牌号
new_plate: 新车牌号
返回:
bool: 是否编辑成功
"""
if old_plate in self.whitelist and new_plate not in self.whitelist:
index = self.whitelist.index(old_plate)
self.whitelist[index] = new_plate
self.whitelist_changed.emit(self.whitelist.copy())
return True
return False
def is_whitelisted(self, plate_number):
"""
检查车牌是否在白名单中
参数:
plate_number: 车牌号
返回:
bool: 是否在白名单中
"""
return plate_number in self.whitelist
def get_whitelist(self):
"""获取白名单副本"""
return self.whitelist.copy()
def clear_whitelist(self):
"""清空白名单"""
self.whitelist.clear()
self.whitelist_changed.emit(self.whitelist.copy())

356
main.py
View File

@@ -1,13 +1,16 @@
import sys
import os
import cv2
import time
import numpy as np
from collections import defaultdict, deque
from PyQt5.QtWidgets import QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout, QLabel, QPushButton, \
QFileDialog, QFrame, QScrollArea, QComboBox
from PyQt5.QtCore import QTimer, Qt, pyqtSignal, QThread
QFileDialog, QFrame, QScrollArea, QComboBox, QListWidget, QListWidgetItem, QLineEdit, QMessageBox, QDialog, \
QDialogButtonBox, QFormLayout, QTextEdit
from PyQt5.QtCore import QTimer, Qt, pyqtSignal, QThread, QDateTime
from PyQt5.QtGui import QImage, QPixmap, QFont, QPainter, QPen, QColor
from yolopart.detector import LicensePlateYOLO
from gate_control import GateController, WhitelistManager
#选择使用哪个模块
# from LPRNET_part.lpr_interface import LPRNmodel_predict
@@ -19,6 +22,38 @@ from yolopart.detector import LicensePlateYOLO
# from CRNN_part.crnn_interface import LPRNmodel_predict
# from CRNN_part.crnn_interface import LPRNinitialize_model
class PlateInputDialog(QDialog):
"""车牌输入对话框"""
def __init__(self, title, default_text=""):
super().__init__()
self.setWindowTitle(title)
self.setFixedSize(300, 100)
self.setWindowModality(Qt.ApplicationModal)
layout = QVBoxLayout()
# 车牌输入框
self.plate_input = QLineEdit()
self.plate_input.setPlaceholderText("请输入车牌号")
self.plate_input.setText(default_text)
self.plate_input.setMaxLength(10)
# 按钮
buttons = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel)
buttons.accepted.connect(self.accept)
buttons.rejected.connect(self.reject)
layout.addWidget(QLabel("车牌号:"))
layout.addWidget(self.plate_input)
layout.addWidget(buttons)
self.setLayout(layout)
def get_plate_number(self):
"""获取输入的车牌号"""
return self.plate_input.text().strip()
class PlateStabilizer:
"""车牌识别结果稳定器"""
@@ -449,13 +484,27 @@ class MainWindow(QMainWindow):
stability_frames=5 # 需要5帧稳定
)
# 初始化道闸控制器和白名单管理器
self.gate_controller = GateController()
self.whitelist_manager = WhitelistManager()
# 记录车牌首次检测时间和上次发送指令时间
self.plate_first_detected = {} # 记录车牌首次检测时间
self.plate_last_command_time = {} # 记录车牌上次发送指令时间
self.init_ui()
self.init_detector()
self.init_camera()
self.init_video()
self.init_gate_control()
# 初始化默认识别方法CRNN的模型
self.change_recognition_method(self.current_recognition_method)
# 设置定时器每30秒清理一次过期的车牌记录
self.cleanup_timer = QTimer(self)
self.cleanup_timer.timeout.connect(self.cleanup_plate_records)
self.cleanup_timer.start(30000) # 30秒
def init_ui(self):
@@ -524,6 +573,156 @@ class MainWindow(QMainWindow):
right_frame.setStyleSheet("QFrame { background-color: #fafafa; border: 2px solid #ddd; }")
right_layout = QVBoxLayout(right_frame)
# 道闸控制区域
gate_frame = QFrame()
gate_frame.setFrameStyle(QFrame.StyledPanel)
gate_frame.setStyleSheet("QFrame { background-color: #f0f8ff; border: 1px solid #b0d4f1; border-radius: 5px; }")
gate_layout = QVBoxLayout(gate_frame)
# 道闸控制标题
gate_title = QLabel("道闸控制")
gate_title.setAlignment(Qt.AlignCenter)
gate_title.setFont(QFont("Arial", 14, QFont.Bold))
gate_title.setStyleSheet("QLabel { color: #1976d2; padding: 5px; }")
# 道闸控制按钮
gate_button_layout = QHBoxLayout()
self.open_gate_button = QPushButton("手动开闸")
self.close_gate_button = QPushButton("手动关闸")
self.open_gate_button.clicked.connect(self.manual_open_gate)
self.close_gate_button.clicked.connect(self.manual_close_gate)
# 设置道闸按钮样式
gate_button_style = """
QPushButton {
background-color: #4CAF50;
color: white;
border: none;
padding: 8px 16px;
border-radius: 4px;
font-weight: bold;
}
QPushButton:hover {
background-color: #45a049;
}
QPushButton:pressed {
background-color: #3d8b40;
}
"""
self.open_gate_button.setStyleSheet(gate_button_style)
close_button_style = """
QPushButton {
background-color: #f44336;
color: white;
border: none;
padding: 8px 16px;
border-radius: 4px;
font-weight: bold;
}
QPushButton:hover {
background-color: #d32f2f;
}
QPushButton:pressed {
background-color: #b71c1c;
}
"""
self.close_gate_button.setStyleSheet(close_button_style)
gate_button_layout.addWidget(self.open_gate_button)
gate_button_layout.addWidget(self.close_gate_button)
# 白名单管理区域
whitelist_layout = QVBoxLayout()
whitelist_label = QLabel("车牌白名单")
whitelist_label.setFont(QFont("Arial", 12, QFont.Bold))
whitelist_label.setStyleSheet("QLabel { color: #333; padding: 5px; }")
# 白名单按钮
whitelist_button_layout = QHBoxLayout()
self.add_plate_button = QPushButton("添加车牌")
self.edit_plate_button = QPushButton("编辑车牌")
self.delete_plate_button = QPushButton("删除车牌")
self.add_plate_button.clicked.connect(self.add_plate_to_whitelist)
self.edit_plate_button.clicked.connect(self.edit_plate_in_whitelist)
self.delete_plate_button.clicked.connect(self.delete_plate_from_whitelist)
# 设置白名单按钮样式
whitelist_button_style = """
QPushButton {
background-color: #2196F3;
color: white;
border: none;
padding: 6px 12px;
border-radius: 4px;
font-weight: bold;
font-size: 11px;
}
QPushButton:hover {
background-color: #1976D2;
}
QPushButton:pressed {
background-color: #0D47A1;
}
"""
self.add_plate_button.setStyleSheet(whitelist_button_style)
self.edit_plate_button.setStyleSheet(whitelist_button_style)
self.delete_plate_button.setStyleSheet(whitelist_button_style)
whitelist_button_layout.addWidget(self.add_plate_button)
whitelist_button_layout.addWidget(self.edit_plate_button)
whitelist_button_layout.addWidget(self.delete_plate_button)
# 白名单列表
self.whitelist_list = QListWidget()
self.whitelist_list.setMaximumHeight(120)
self.whitelist_list.setStyleSheet("""
QListWidget {
border: 1px solid #ddd;
background-color: white;
border-radius: 4px;
padding: 5px;
}
QListWidget::item {
padding: 5px;
border-bottom: 1px solid #eee;
}
QListWidget::item:selected {
background-color: #e3f2fd;
color: #1976d2;
}
""")
# 调试日志区域
log_label = QLabel("调试日志")
log_label.setFont(QFont("Arial", 10, QFont.Bold))
log_label.setStyleSheet("QLabel { color: #333; padding: 5px; }")
self.log_text = QTextEdit()
self.log_text.setMaximumHeight(100)
self.log_text.setReadOnly(True)
self.log_text.setStyleSheet("""
QTextEdit {
border: 1px solid #ddd;
background-color: #f9f9f9;
border-radius: 4px;
padding: 5px;
font-family: 'Consolas', 'Courier New', monospace;
font-size: 10px;
}
""")
# 添加到道闸控制布局
whitelist_layout.addWidget(whitelist_label)
whitelist_layout.addLayout(whitelist_button_layout)
whitelist_layout.addWidget(self.whitelist_list)
gate_layout.addWidget(gate_title)
gate_layout.addLayout(gate_button_layout)
gate_layout.addLayout(whitelist_layout)
gate_layout.addWidget(log_label)
gate_layout.addWidget(self.log_text)
# 标题
title_label = QLabel("检测结果")
title_label.setAlignment(Qt.AlignCenter)
@@ -576,6 +775,7 @@ class MainWindow(QMainWindow):
self.current_method_label.setFont(QFont("Arial", 9))
self.current_method_label.setStyleSheet("QLabel { color: #666; padding: 5px; }")
right_layout.addWidget(gate_frame)
right_layout.addWidget(title_label)
right_layout.addLayout(method_layout)
right_layout.addWidget(self.count_label)
@@ -1014,6 +1214,13 @@ class MainWindow(QMainWindow):
# 更新存储的结果
self.last_plate_results = stable_results
# 处理道闸控制逻辑
for result in stable_results:
plate_number = result.get('plate_number', '')
if plate_number and plate_number != "识别失败":
# 调用道闸控制逻辑
self.process_gate_control(plate_number)
# 清理旧的车牌记录
current_plate_ids = [result['id'] for result in stable_results]
@@ -1111,6 +1318,151 @@ class MainWindow(QMainWindow):
if self.current_frame is not None:
self.process_frame(self.current_frame)
def init_gate_control(self):
"""初始化道闸控制功能"""
# 更新白名单列表显示
self.update_whitelist_display()
# 添加初始日志
self.add_log("道闸控制系统已初始化")
# GateController的IP地址在初始化时已设置默认为192.168.43.12
def manual_open_gate(self):
"""手动开闸"""
self.gate_controller.manual_open_gate()
self.add_log("手动开闸指令已发送")
def manual_close_gate(self):
"""手动关闸"""
self.gate_controller.manual_close_gate()
self.add_log("手动关闸指令已发送")
def cleanup_plate_records(self):
"""清理过期的车牌记录"""
current_time = time.time()
# 清理超过30秒的首次检测记录
expired_plates = []
for plate, first_time in self.plate_first_detected.items():
if current_time - first_time > 30:
expired_plates.append(plate)
for plate in expired_plates:
del self.plate_first_detected[plate]
self.add_log(f"清理过期的首次检测记录: {plate}")
# 清理超过1小时的指令发送记录
expired_commands = []
for plate, last_time in self.plate_last_command_time.items():
if current_time - last_time > 3600:
expired_commands.append(plate)
for plate in expired_commands:
del self.plate_last_command_time[plate]
self.add_log(f"清理过期的指令记录: {plate}")
def add_plate_to_whitelist(self):
"""添加车牌到白名单"""
dialog = PlateInputDialog("添加车牌", "")
if dialog.exec_() == QDialog.Accepted:
plate_number = dialog.get_plate_number()
if plate_number:
self.whitelist_manager.add_plate(plate_number)
self.update_whitelist_display()
self.add_log(f"已添加车牌到白名单: {plate_number}")
def edit_plate_in_whitelist(self):
"""编辑白名单中的车牌"""
current_item = self.whitelist_list.currentItem()
if not current_item:
QMessageBox.warning(self, "提示", "请先选择要编辑的车牌")
return
old_plate = current_item.text()
dialog = PlateInputDialog("编辑车牌", old_plate)
if dialog.exec_() == QDialog.Accepted:
new_plate = dialog.get_plate_number()
if new_plate and new_plate != old_plate:
self.whitelist_manager.remove_plate(old_plate)
self.whitelist_manager.add_plate(new_plate)
self.update_whitelist_display()
self.add_log(f"已修改车牌: {old_plate} -> {new_plate}")
def delete_plate_from_whitelist(self):
"""从白名单中删除车牌"""
current_item = self.whitelist_list.currentItem()
if not current_item:
QMessageBox.warning(self, "提示", "请先选择要删除的车牌")
return
plate = current_item.text()
reply = QMessageBox.question(self, "确认", f"确定要删除车牌 {plate} 吗?",
QMessageBox.Yes | QMessageBox.No)
if reply == QMessageBox.Yes:
self.whitelist_manager.remove_plate(plate)
self.update_whitelist_display()
self.add_log(f"已从白名单删除车牌: {plate}")
def update_whitelist_display(self):
"""更新白名单列表显示"""
self.whitelist_list.clear()
for plate in self.whitelist_manager.get_whitelist():
self.whitelist_list.addItem(plate)
def add_log(self, message):
"""添加日志消息"""
current_time = QDateTime.currentDateTime().toString("hh:mm:ss")
log_message = f"[{current_time}] {message}"
self.log_text.append(log_message)
# 限制日志行数,避免内存占用过多
if self.log_text.document().blockCount() > 100:
cursor = self.log_text.textCursor()
cursor.movePosition(cursor.Start)
cursor.select(cursor.BlockUnderCursor)
cursor.removeSelectedText()
cursor.deleteChar() # 删除换行符
def process_gate_control(self, plate_number):
"""处理道闸控制逻辑"""
# 检查车牌是否在白名单中
if self.whitelist_manager.is_whitelisted(plate_number):
current_time = time.time()
# 检查是否在10秒内已发送过指令
if plate_number in self.plate_last_command_time:
time_since_last_command = current_time - self.plate_last_command_time[plate_number]
if time_since_last_command < 10: # 10秒内不再发送指令
self.add_log(f"车牌 {plate_number} 在10秒内已发送过指令跳过")
return
# 记录车牌首次检测时间
if plate_number not in self.plate_first_detected:
self.plate_first_detected[plate_number] = current_time
self.add_log(f"车牌 {plate_number} 首次检测等待2秒稳定确认")
return
# 检查是否已稳定2秒
time_since_first_detected = current_time - self.plate_first_detected[plate_number]
if time_since_first_detected >= 2: # 稳定2秒后发送指令
# 使用GateController的auto_open_gate方法它会自动处理时间差
self.gate_controller.auto_open_gate(plate_number)
self.add_log(f"车牌 {plate_number} 验证通过,已发送开闸指令")
# 更新上次发送指令时间
self.plate_last_command_time[plate_number] = current_time
# 清除首次检测时间,以便下次重新检测
if plate_number in self.plate_first_detected:
del self.plate_first_detected[plate_number]
else:
# 还未稳定2秒继续等待
self.add_log(f"车牌 {plate_number} 检测中,已等待 {time_since_first_detected:.1f}")
else:
# 不在白名单中,发送禁行指令
self.gate_controller.deny_access(plate_number)
self.add_log(f"车牌 {plate_number} 不在白名单中,已发送禁行指令")
def closeEvent(self, event):
"""窗口关闭事件"""
if self.camera_thread and self.camera_thread.running:

58
simple_client.py Normal file
View File

@@ -0,0 +1,58 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
简单的UDP客户端程序
向Hi3861设备发送JSON命令
"""
import socket
import json
import time
def send_command():
"""发送命令到Hi3861设备"""
# 目标设备信息
target_ip = "192.168.43.12"
target_port = 8081
#cmd为1道闸打开十秒后关闭,oled显示字符串信息默认使用及cmd为4
#cmd为2道闸舵机向打开方向旋转90度oled上不显示仅在qt界面手动开闸时调用
#cmd为3道闸舵机向关闭方向旋转90度oled上不显示仅在qt界面手动关闸时调用
#cmd为4oled显示字符串信息道闸舵机不旋转
# 创建JSON命令
command = {
"cmd": 1,
"text": "沪AAAAAA 通行"
}
json_command = json.dumps(command, ensure_ascii=False)
try:
# 创建UDP socket
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# 发送命令
print(f"正在向 {target_ip}:{target_port} 发送命令...")
print(f"命令内容: {json_command}")
sock.sendto(json_command.encode('utf-8'), (target_ip, target_port))
print("命令发送成功!")
print("设备将执行以下操作:")
print("1. 顺时针旋转舵机90度")
print("2. 在OLED屏幕上显示沪AAAAAA")
print("3. 等待10秒")
print("4. 逆时针旋转舵机90度")
print("5. 清空OLED屏幕")
except Exception as e:
print(f"发送命令失败: {e}")
finally:
sock.close()
if __name__ == "__main__":
print("Hi3861 简单客户端程序")
print("=" * 30)
send_command()
print("程序结束")