更新接口
This commit is contained in:
Binary file not shown.
@@ -5,6 +5,18 @@ import cv2
|
||||
class OCRProcessor:
|
||||
def __init__(self):
|
||||
self.model = TextRecognition(model_name="PP-OCRv5_server_rec")
|
||||
# 定义允许的字符集合(不包含空白字符)
|
||||
self.allowed_chars = [
|
||||
# 中文省份简称
|
||||
'京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
|
||||
'苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
|
||||
'桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新',
|
||||
# 字母 A-Z
|
||||
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
|
||||
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
|
||||
# 数字 0-9
|
||||
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'
|
||||
]
|
||||
print("OCR模型初始化完成(占位)")
|
||||
|
||||
def predict(self, image_array):
|
||||
@@ -14,6 +26,14 @@ class OCRProcessor:
|
||||
results = output[0]["rec_text"]
|
||||
placeholder_result = results.split(',')
|
||||
return placeholder_result
|
||||
|
||||
def filter_allowed_chars(self, text):
|
||||
"""只保留允许的字符"""
|
||||
filtered_text = ""
|
||||
for char in text:
|
||||
if char in self.allowed_chars:
|
||||
filtered_text += char
|
||||
return filtered_text
|
||||
|
||||
# 保留原有函数接口
|
||||
_processor = OCRProcessor()
|
||||
@@ -42,8 +62,12 @@ def LPRNmodel_predict(image_array):
|
||||
else:
|
||||
result_str = str(raw_result)
|
||||
|
||||
# 过滤掉'·'字符
|
||||
# 过滤掉'·'和'-'字符
|
||||
filtered_str = result_str.replace('·', '')
|
||||
filtered_str = filtered_str.replace('-', '')
|
||||
|
||||
# 只保留允许的字符
|
||||
filtered_str = _processor.filter_allowed_chars(filtered_str)
|
||||
|
||||
# 转换为字符列表
|
||||
char_list = list(filtered_str)
|
||||
|
||||
BIN
lightCRNN_part/best_model.pth
Normal file
BIN
lightCRNN_part/best_model.pth
Normal file
Binary file not shown.
546
lightCRNN_part/lightcrnn_interface.py
Normal file
546
lightCRNN_part/lightcrnn_interface.py
Normal file
@@ -0,0 +1,546 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import cv2
|
||||
from torchvision import transforms
|
||||
import os
|
||||
import math
|
||||
|
||||
# 全局变量
|
||||
lightcrnn_model = None
|
||||
lightcrnn_decoder = None
|
||||
lightcrnn_preprocessor = None
|
||||
device = None
|
||||
|
||||
class DepthwiseSeparableConv(nn.Module):
|
||||
"""深度可分离卷积"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
|
||||
super(DepthwiseSeparableConv, self).__init__()
|
||||
# 深度卷积
|
||||
self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size,
|
||||
stride=stride, padding=padding, groups=in_channels, bias=False)
|
||||
# 逐点卷积
|
||||
self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
||||
self.bn = nn.BatchNorm2d(out_channels)
|
||||
self.relu = nn.ReLU6(inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.depthwise(x)
|
||||
x = self.pointwise(x)
|
||||
x = self.bn(x)
|
||||
x = self.relu(x)
|
||||
return x
|
||||
|
||||
class ChannelAttention(nn.Module):
|
||||
"""通道注意力机制"""
|
||||
|
||||
def __init__(self, in_channels, reduction=16):
|
||||
super(ChannelAttention, self).__init__()
|
||||
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
||||
self.max_pool = nn.AdaptiveMaxPool2d(1)
|
||||
|
||||
self.fc = nn.Sequential(
|
||||
nn.Conv2d(in_channels, in_channels // reduction, 1, bias=False),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(in_channels // reduction, in_channels, 1, bias=False)
|
||||
)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
avg_out = self.fc(self.avg_pool(x))
|
||||
max_out = self.fc(self.max_pool(x))
|
||||
out = avg_out + max_out
|
||||
return x * self.sigmoid(out)
|
||||
|
||||
class InvertedResidual(nn.Module):
|
||||
"""MobileNetV2的倒残差块"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, stride=1, expand_ratio=6):
|
||||
super(InvertedResidual, self).__init__()
|
||||
self.stride = stride
|
||||
self.use_residual = stride == 1 and in_channels == out_channels
|
||||
|
||||
hidden_dim = int(round(in_channels * expand_ratio))
|
||||
|
||||
layers = []
|
||||
if expand_ratio != 1:
|
||||
# 扩展层
|
||||
layers.extend([
|
||||
nn.Conv2d(in_channels, hidden_dim, 1, bias=False),
|
||||
nn.BatchNorm2d(hidden_dim),
|
||||
nn.ReLU6(inplace=True)
|
||||
])
|
||||
|
||||
# 深度卷积
|
||||
layers.extend([
|
||||
nn.Conv2d(hidden_dim, hidden_dim, 3, stride=stride, padding=1, groups=hidden_dim, bias=False),
|
||||
nn.BatchNorm2d(hidden_dim),
|
||||
nn.ReLU6(inplace=True),
|
||||
# 线性瓶颈
|
||||
nn.Conv2d(hidden_dim, out_channels, 1, bias=False),
|
||||
nn.BatchNorm2d(out_channels)
|
||||
])
|
||||
|
||||
self.conv = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
if self.use_residual:
|
||||
return x + self.conv(x)
|
||||
else:
|
||||
return self.conv(x)
|
||||
|
||||
class LightweightCNN(nn.Module):
|
||||
"""增强版轻量化CNN特征提取器"""
|
||||
|
||||
def __init__(self, num_channels=3):
|
||||
super(LightweightCNN, self).__init__()
|
||||
|
||||
# 初始卷积层 - 适当增加通道数
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.Conv2d(num_channels, 48, kernel_size=3, stride=1, padding=1, bias=False),
|
||||
nn.BatchNorm2d(48),
|
||||
nn.ReLU6(inplace=True)
|
||||
)
|
||||
|
||||
# 增强版MobileNet风格的特征提取
|
||||
self.features = nn.Sequential(
|
||||
# 第一组:48 -> 32
|
||||
InvertedResidual(48, 32, stride=1, expand_ratio=2),
|
||||
InvertedResidual(32, 32, stride=1, expand_ratio=2), # 增加一层
|
||||
nn.MaxPool2d(kernel_size=2, stride=2), # 32x128 -> 16x64
|
||||
|
||||
# 第二组:32 -> 48
|
||||
InvertedResidual(32, 48, stride=1, expand_ratio=4),
|
||||
InvertedResidual(48, 48, stride=1, expand_ratio=4),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2), # 16x64 -> 8x32
|
||||
|
||||
# 第三组:48 -> 64
|
||||
InvertedResidual(48, 64, stride=1, expand_ratio=4),
|
||||
InvertedResidual(64, 64, stride=1, expand_ratio=4),
|
||||
|
||||
# 第四组:64 -> 96
|
||||
InvertedResidual(64, 96, stride=1, expand_ratio=4),
|
||||
InvertedResidual(96, 96, stride=1, expand_ratio=4),
|
||||
nn.MaxPool2d(kernel_size=(2, 1), stride=(2, 1)), # 8x32 -> 4x32
|
||||
|
||||
# 第五组:96 -> 128
|
||||
InvertedResidual(96, 128, stride=1, expand_ratio=4),
|
||||
InvertedResidual(128, 128, stride=1, expand_ratio=4),
|
||||
nn.MaxPool2d(kernel_size=(2, 1), stride=(2, 1)), # 4x32 -> 2x32
|
||||
|
||||
# 最后的卷积层 - 增加通道数
|
||||
nn.Conv2d(128, 160, kernel_size=2, stride=1, padding=0, bias=False), # 2x32 -> 1x31
|
||||
nn.BatchNorm2d(160),
|
||||
nn.ReLU6(inplace=True)
|
||||
)
|
||||
|
||||
# 通道注意力
|
||||
self.channel_attention = ChannelAttention(160)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.features(x)
|
||||
x = self.channel_attention(x)
|
||||
return x
|
||||
|
||||
class LightweightGRU(nn.Module):
|
||||
"""增强版轻量化GRU层"""
|
||||
|
||||
def __init__(self, input_size, hidden_size, num_layers=2): # 默认增加到2层
|
||||
super(LightweightGRU, self).__init__()
|
||||
self.gru = nn.GRU(input_size, hidden_size, num_layers=num_layers,
|
||||
bidirectional=True, batch_first=True, dropout=0.2 if num_layers > 1 else 0)
|
||||
# 增加一个额外的线性层
|
||||
self.linear1 = nn.Linear(hidden_size * 2, hidden_size * 2)
|
||||
self.linear2 = nn.Linear(hidden_size * 2, hidden_size)
|
||||
self.dropout = nn.Dropout(0.2) # 增加dropout率
|
||||
self.norm = nn.LayerNorm(hidden_size) # 添加层归一化
|
||||
|
||||
def forward(self, x):
|
||||
gru_out, _ = self.gru(x)
|
||||
output = self.linear1(gru_out)
|
||||
output = F.relu(output) # 添加激活函数
|
||||
output = self.dropout(output)
|
||||
output = self.linear2(output)
|
||||
output = self.norm(output) # 应用层归一化
|
||||
output = self.dropout(output)
|
||||
return output
|
||||
|
||||
class LightweightCRNN(nn.Module):
|
||||
"""增强版轻量化CRNN模型"""
|
||||
|
||||
def __init__(self, img_height, num_classes, num_channels=3, hidden_size=160): # 调整隐藏层大小
|
||||
super(LightweightCRNN, self).__init__()
|
||||
|
||||
self.img_height = img_height
|
||||
self.num_classes = num_classes
|
||||
self.hidden_size = hidden_size
|
||||
|
||||
# 增强版轻量化CNN特征提取器
|
||||
self.cnn = LightweightCNN(num_channels)
|
||||
|
||||
# 增强版轻量化RNN序列建模器
|
||||
self.rnn = LightweightGRU(160, hidden_size, num_layers=2) # 使用更大的输入尺寸和2层GRU
|
||||
|
||||
# 输出层 - 添加额外的全连接层
|
||||
self.fc = nn.Linear(hidden_size, hidden_size // 2)
|
||||
self.dropout = nn.Dropout(0.2)
|
||||
self.classifier = nn.Linear(hidden_size // 2, num_classes)
|
||||
|
||||
# 初始化权重
|
||||
self._initialize_weights()
|
||||
|
||||
def _initialize_weights(self):
|
||||
"""初始化模型权重"""
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
nn.init.constant_(m.weight, 1)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, 0, 0.01)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, input):
|
||||
"""
|
||||
input: [batch_size, channels, height, width]
|
||||
output: [seq_len, batch_size, num_classes]
|
||||
"""
|
||||
# CNN特征提取
|
||||
conv_features = self.cnn(input) # [batch_size, 160, 1, seq_len]
|
||||
|
||||
# 重塑为RNN输入格式
|
||||
batch_size, channels, height, width = conv_features.size()
|
||||
assert height == 1, f"Height should be 1, got {height}"
|
||||
|
||||
# [batch_size, 160, 1, seq_len] -> [batch_size, seq_len, 160]
|
||||
conv_features = conv_features.squeeze(2) # [batch_size, 160, seq_len]
|
||||
conv_features = conv_features.permute(0, 2, 1) # [batch_size, seq_len, 160]
|
||||
|
||||
# RNN序列建模
|
||||
rnn_output = self.rnn(conv_features) # [batch_size, seq_len, hidden_size]
|
||||
|
||||
# 全连接层处理
|
||||
fc_output = self.fc(rnn_output) # [batch_size, seq_len, hidden_size//2]
|
||||
fc_output = F.relu(fc_output)
|
||||
fc_output = self.dropout(fc_output)
|
||||
|
||||
# 分类
|
||||
output = self.classifier(fc_output) # [batch_size, seq_len, num_classes]
|
||||
|
||||
# 转换为CTC期望的格式: [seq_len, batch_size, num_classes]
|
||||
output = output.permute(1, 0, 2)
|
||||
|
||||
return output
|
||||
|
||||
class LightCTCDecoder:
|
||||
"""轻量化CTC解码器"""
|
||||
def __init__(self):
|
||||
# 中国车牌字符集
|
||||
# 省份简称
|
||||
provinces = ['京', '津', '沪', '渝', '冀', '豫', '云', '辽', '黑', '湘', '皖', '鲁',
|
||||
'新', '苏', '浙', '赣', '鄂', '桂', '甘', '晋', '蒙', '陕', '吉', '闽',
|
||||
'贵', '粤', '青', '藏', '川', '宁', '琼']
|
||||
|
||||
# 字母(包含I和O)
|
||||
letters = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
|
||||
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']
|
||||
|
||||
# 数字
|
||||
digits = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
|
||||
|
||||
# 组合所有字符
|
||||
self.character = provinces + letters + digits
|
||||
|
||||
# 添加空白字符用于CTC
|
||||
self.character = ['[blank]'] + self.character
|
||||
|
||||
# 创建字符到索引的映射
|
||||
self.dict = {char: i for i, char in enumerate(self.character)}
|
||||
self.dict_reverse = {i: char for i, char in enumerate(self.character)}
|
||||
|
||||
self.num_classes = len(self.character)
|
||||
self.blank_idx = 0
|
||||
|
||||
def decode_greedy(self, predictions):
|
||||
"""贪婪解码"""
|
||||
# 获取每个时间步的最大概率索引
|
||||
indices = torch.argmax(predictions, dim=1)
|
||||
|
||||
# CTC解码:移除重复字符和空白字符
|
||||
decoded_chars = []
|
||||
prev_idx = -1
|
||||
|
||||
for idx in indices:
|
||||
idx = idx.item()
|
||||
if idx != prev_idx and idx != self.blank_idx:
|
||||
if idx < len(self.character):
|
||||
decoded_chars.append(self.character[idx])
|
||||
prev_idx = idx
|
||||
|
||||
return ''.join(decoded_chars)
|
||||
|
||||
def decode_with_confidence(self, predictions):
|
||||
"""解码并返回置信度信息"""
|
||||
# 应用softmax获得概率
|
||||
probs = torch.softmax(predictions, dim=1)
|
||||
|
||||
# 贪婪解码
|
||||
indices = torch.argmax(probs, dim=1)
|
||||
max_probs = torch.max(probs, dim=1)[0]
|
||||
|
||||
# CTC解码
|
||||
decoded_chars = []
|
||||
char_confidences = []
|
||||
prev_idx = -1
|
||||
|
||||
for i, idx in enumerate(indices):
|
||||
idx = idx.item()
|
||||
confidence = max_probs[i].item()
|
||||
|
||||
if idx != prev_idx and idx != self.blank_idx:
|
||||
if idx < len(self.character):
|
||||
decoded_chars.append(self.character[idx])
|
||||
char_confidences.append(confidence)
|
||||
prev_idx = idx
|
||||
|
||||
text = ''.join(decoded_chars)
|
||||
avg_confidence = np.mean(char_confidences) if char_confidences else 0.0
|
||||
|
||||
return text, avg_confidence, char_confidences
|
||||
|
||||
class LightLicensePlatePreprocessor:
|
||||
"""轻量化车牌图像预处理器"""
|
||||
def __init__(self, target_height=32, target_width=128):
|
||||
self.target_height = target_height
|
||||
self.target_width = target_width
|
||||
|
||||
# 定义图像变换
|
||||
self.transform = transforms.Compose([
|
||||
transforms.Resize((target_height, target_width)),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
||||
std=[0.229, 0.224, 0.225])
|
||||
])
|
||||
|
||||
def preprocess_numpy_array(self, image_array):
|
||||
"""预处理numpy数组格式的图像"""
|
||||
try:
|
||||
# 确保图像是RGB格式
|
||||
if len(image_array.shape) == 3 and image_array.shape[2] == 3:
|
||||
# 如果是BGR格式,转换为RGB
|
||||
if image_array.dtype == np.uint8:
|
||||
image_array = cv2.cvtColor(image_array, cv2.COLOR_BGR2RGB)
|
||||
|
||||
# 转换为PIL图像
|
||||
if image_array.dtype != np.uint8:
|
||||
image_array = (image_array * 255).astype(np.uint8)
|
||||
|
||||
image = Image.fromarray(image_array)
|
||||
|
||||
# 应用变换
|
||||
tensor = self.transform(image)
|
||||
|
||||
# 添加batch维度
|
||||
tensor = tensor.unsqueeze(0)
|
||||
|
||||
return tensor
|
||||
|
||||
except Exception as e:
|
||||
print(f"图像预处理失败: {e}")
|
||||
return None
|
||||
|
||||
def LPRNinitialize_model():
|
||||
"""
|
||||
初始化轻量化CRNN模型
|
||||
|
||||
返回:
|
||||
bool: 初始化是否成功
|
||||
"""
|
||||
global lightcrnn_model, lightcrnn_decoder, lightcrnn_preprocessor, device
|
||||
|
||||
try:
|
||||
# 设置设备
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
print(f"LightCRNN使用设备: {device}")
|
||||
|
||||
# 初始化组件
|
||||
lightcrnn_decoder = LightCTCDecoder()
|
||||
lightcrnn_preprocessor = LightLicensePlatePreprocessor(target_height=32, target_width=128)
|
||||
|
||||
# 创建模型实例
|
||||
lightcrnn_model = LightweightCRNN(
|
||||
img_height=32,
|
||||
num_classes=lightcrnn_decoder.num_classes,
|
||||
hidden_size=160
|
||||
)
|
||||
|
||||
# 加载模型权重
|
||||
model_path = os.path.join(os.path.dirname(__file__), 'best_model.pth')
|
||||
|
||||
if not os.path.exists(model_path):
|
||||
raise FileNotFoundError(f"模型文件不存在: {model_path}")
|
||||
|
||||
print(f"正在加载LightCRNN模型: {model_path}")
|
||||
|
||||
# 加载检查点,处理可能的模块依赖问题
|
||||
try:
|
||||
checkpoint = torch.load(model_path, map_location=device, weights_only=False)
|
||||
except (ModuleNotFoundError, AttributeError) as e:
|
||||
if 'config' in str(e) or 'Config' in str(e):
|
||||
print("检测到模型文件包含config依赖,尝试使用weights_only模式加载...")
|
||||
try:
|
||||
# 尝试使用weights_only=True来避免pickle问题
|
||||
checkpoint = torch.load(model_path, map_location=device, weights_only=True)
|
||||
except Exception:
|
||||
# 如果还是失败,创建一个更完整的mock config
|
||||
import sys
|
||||
import types
|
||||
|
||||
# 创建mock config模块
|
||||
mock_config = types.ModuleType('config')
|
||||
|
||||
# 添加可能需要的Config类
|
||||
class Config:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
mock_config.Config = Config
|
||||
sys.modules['config'] = mock_config
|
||||
|
||||
try:
|
||||
checkpoint = torch.load(model_path, map_location=device, weights_only=False)
|
||||
finally:
|
||||
# 清理临时模块
|
||||
if 'config' in sys.modules:
|
||||
del sys.modules['config']
|
||||
else:
|
||||
raise e
|
||||
|
||||
# 处理不同的模型保存格式
|
||||
if isinstance(checkpoint, dict):
|
||||
if 'model_state_dict' in checkpoint:
|
||||
# 完整检查点格式
|
||||
state_dict = checkpoint['model_state_dict']
|
||||
print(f"检查点信息:")
|
||||
print(f" - 训练轮次: {checkpoint.get('epoch', 'N/A')}")
|
||||
print(f" - 最佳验证损失: {checkpoint.get('best_val_loss', 'N/A')}")
|
||||
else:
|
||||
# 精简模型格式(只包含权重)
|
||||
print("加载精简模型(仅权重)")
|
||||
state_dict = checkpoint
|
||||
else:
|
||||
# 直接是状态字典
|
||||
state_dict = checkpoint
|
||||
|
||||
# 加载权重
|
||||
lightcrnn_model.load_state_dict(state_dict)
|
||||
lightcrnn_model.to(device)
|
||||
lightcrnn_model.eval()
|
||||
|
||||
print("LightCRNN模型初始化完成")
|
||||
|
||||
# 统计模型参数
|
||||
total_params = sum(p.numel() for p in lightcrnn_model.parameters())
|
||||
print(f"LightCRNN模型参数数量: {total_params:,}")
|
||||
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
print(f"LightCRNN模型初始化失败: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return False
|
||||
|
||||
def LPRNmodel_predict(image_array):
|
||||
"""
|
||||
轻量化CRNN车牌号识别接口函数
|
||||
|
||||
参数:
|
||||
image_array: numpy数组格式的车牌图像,已经过矫正处理
|
||||
|
||||
返回:
|
||||
list: 包含最多8个字符的列表,代表车牌号的每个字符
|
||||
例如: ['京', 'A', '1', '2', '3', '4', '5', ''] (蓝牌7位+占位符)
|
||||
['京', 'A', 'D', '1', '2', '3', '4', '5'] (绿牌8位)
|
||||
"""
|
||||
global lightcrnn_model, lightcrnn_decoder, lightcrnn_preprocessor, device
|
||||
|
||||
if lightcrnn_model is None or lightcrnn_decoder is None or lightcrnn_preprocessor is None:
|
||||
print("LightCRNN模型未初始化,请先调用LPRNinitialize_model()")
|
||||
return ['待', '识', '别', '0', '0', '0', '0', '0']
|
||||
|
||||
try:
|
||||
# 预处理图像
|
||||
input_tensor = lightcrnn_preprocessor.preprocess_numpy_array(image_array)
|
||||
if input_tensor is None:
|
||||
raise ValueError("图像预处理失败")
|
||||
|
||||
input_tensor = input_tensor.to(device)
|
||||
|
||||
# 模型推理
|
||||
with torch.no_grad():
|
||||
outputs = lightcrnn_model(input_tensor) # (seq_len, batch_size, num_classes)
|
||||
|
||||
# 移除batch维度
|
||||
outputs = outputs.squeeze(1) # (seq_len, num_classes)
|
||||
|
||||
# CTC解码
|
||||
predicted_text, confidence, char_confidences = lightcrnn_decoder.decode_with_confidence(outputs)
|
||||
|
||||
print(f"LightCRNN识别结果: {predicted_text}, 置信度: {confidence:.3f}")
|
||||
|
||||
# 将字符串转换为字符列表
|
||||
char_list = list(predicted_text)
|
||||
|
||||
# 确保返回至少7个字符,最多8个字符
|
||||
if len(char_list) < 7:
|
||||
# 如果识别结果少于7个字符,用'0'补齐到7位
|
||||
char_list.extend(['0'] * (7 - len(char_list)))
|
||||
elif len(char_list) > 8:
|
||||
# 如果识别结果多于8个字符,截取前8个
|
||||
char_list = char_list[:8]
|
||||
|
||||
# 如果是7位,补齐到8位以保持接口一致性(第8位用空字符或占位符)
|
||||
if len(char_list) == 7:
|
||||
char_list.append('') # 添加空字符作为第8位占位符
|
||||
|
||||
return char_list
|
||||
|
||||
except Exception as e:
|
||||
print(f"LightCRNN识别失败: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
return ['识', '别', '失', '败', '0', '0', '0', '0']
|
||||
|
||||
def create_lightweight_model(model_type='lightweight_crnn', img_height=32, num_classes=66, hidden_size=160):
|
||||
"""创建增强版轻量化模型"""
|
||||
if model_type == 'lightweight_crnn':
|
||||
return LightweightCRNN(img_height, num_classes, hidden_size=hidden_size)
|
||||
else:
|
||||
raise ValueError(f"Unknown lightweight model type: {model_type}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 测试轻量化模型
|
||||
print("测试LightCRNN模型...")
|
||||
|
||||
# 初始化模型
|
||||
success = LPRNinitialize_model()
|
||||
if success:
|
||||
print("模型初始化成功")
|
||||
|
||||
# 创建测试输入
|
||||
test_input = np.random.randint(0, 255, (32, 128, 3), dtype=np.uint8)
|
||||
|
||||
# 测试预测
|
||||
result = LPRNmodel_predict(test_input)
|
||||
print(f"测试预测结果: {result}")
|
||||
else:
|
||||
print("模型初始化失败")
|
||||
@@ -2,6 +2,7 @@ import cv2
|
||||
import numpy as np
|
||||
from ultralytics import YOLO
|
||||
import os
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
class LicensePlateYOLO:
|
||||
"""
|
||||
@@ -113,19 +114,38 @@ class LicensePlateYOLO:
|
||||
print(f"检测过程中出错: {e}")
|
||||
return []
|
||||
|
||||
def draw_detections(self, image, detections):
|
||||
def draw_detections(self, image, detections, plate_numbers=None):
|
||||
"""
|
||||
在图像上绘制检测结果
|
||||
|
||||
参数:
|
||||
image: 输入图像
|
||||
detections: 检测结果列表
|
||||
plate_numbers: 车牌号列表,与detections对应
|
||||
|
||||
返回:
|
||||
numpy.ndarray: 绘制了检测结果的图像
|
||||
"""
|
||||
draw_image = image.copy()
|
||||
|
||||
# 转换为PIL图像以支持中文字符
|
||||
pil_image = Image.fromarray(cv2.cvtColor(draw_image, cv2.COLOR_BGR2RGB))
|
||||
draw = ImageDraw.Draw(pil_image)
|
||||
|
||||
# 尝试加载中文字体
|
||||
try:
|
||||
# Windows系统常见的中文字体
|
||||
font_path = "C:/Windows/Fonts/simhei.ttf" # 黑体
|
||||
if not os.path.exists(font_path):
|
||||
font_path = "C:/Windows/Fonts/msyh.ttc" # 微软雅黑
|
||||
if not os.path.exists(font_path):
|
||||
font_path = "C:/Windows/Fonts/simsun.ttc" # 宋体
|
||||
|
||||
font = ImageFont.truetype(font_path, 20)
|
||||
except:
|
||||
# 如果无法加载字体,使用默认字体
|
||||
font = ImageFont.load_default()
|
||||
|
||||
for i, detection in enumerate(detections):
|
||||
box = detection['box']
|
||||
keypoints = detection['keypoints']
|
||||
@@ -133,6 +153,11 @@ class LicensePlateYOLO:
|
||||
confidence = detection['confidence']
|
||||
incomplete = detection.get('incomplete', False)
|
||||
|
||||
# 获取对应的车牌号
|
||||
plate_number = ""
|
||||
if plate_numbers and i < len(plate_numbers):
|
||||
plate_number = plate_numbers[i]
|
||||
|
||||
# 绘制边界框
|
||||
x1, y1, x2, y2 = map(int, box)
|
||||
|
||||
@@ -140,30 +165,53 @@ class LicensePlateYOLO:
|
||||
if class_name == '绿牌':
|
||||
box_color = (0, 255, 0) # 绿色
|
||||
elif class_name == '蓝牌':
|
||||
box_color = (255, 0, 0) # 蓝色
|
||||
box_color = (0, 0, 255) # 蓝色
|
||||
else:
|
||||
box_color = (128, 128, 128) # 灰色
|
||||
|
||||
cv2.rectangle(draw_image, (x1, y1), (x2, y2), box_color, 2)
|
||||
# 在PIL图像上绘制边界框
|
||||
draw.rectangle([(x1, y1), (x2, y2)], outline=box_color, width=2)
|
||||
|
||||
# 构建标签文本
|
||||
if plate_number:
|
||||
label = f"{class_name} {plate_number} {confidence:.2f}"
|
||||
else:
|
||||
label = f"{class_name} {confidence:.2f}"
|
||||
|
||||
# 绘制标签
|
||||
label = f"{class_name} {confidence:.2f}"
|
||||
if incomplete:
|
||||
label += " (不完整)"
|
||||
|
||||
# 计算文本大小和位置
|
||||
font = cv2.FONT_HERSHEY_SIMPLEX
|
||||
font_scale = 0.6
|
||||
thickness = 2
|
||||
(text_width, text_height), _ = cv2.getTextSize(label, font, font_scale, thickness)
|
||||
# 计算文本大小
|
||||
bbox = draw.textbbox((0, 0), label, font=font)
|
||||
text_width = bbox[2] - bbox[0]
|
||||
text_height = bbox[3] - bbox[1]
|
||||
|
||||
# 绘制文本背景
|
||||
cv2.rectangle(draw_image, (x1, y1 - text_height - 10),
|
||||
(x1 + text_width, y1), box_color, -1)
|
||||
draw.rectangle([(x1, y1 - text_height - 10), (x1 + text_width, y1)],
|
||||
fill=box_color)
|
||||
|
||||
# 绘制文本
|
||||
cv2.putText(draw_image, label, (x1, y1 - 5),
|
||||
font, font_scale, (255, 255, 255), thickness)
|
||||
draw.text((x1, y1 - text_height - 5), label, fill=(255, 255, 255), font=font)
|
||||
|
||||
# 转换回OpenCV格式
|
||||
draw_image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
||||
|
||||
# 绘制关键点和连线(使用OpenCV)
|
||||
for i, detection in enumerate(detections):
|
||||
box = detection['box']
|
||||
keypoints = detection['keypoints']
|
||||
incomplete = detection.get('incomplete', False)
|
||||
|
||||
x1, y1, x2, y2 = map(int, box)
|
||||
|
||||
# 根据车牌类型选择颜色
|
||||
class_name = detection['class_name']
|
||||
if class_name == '绿牌':
|
||||
box_color = (0, 255, 0) # 绿色
|
||||
elif class_name == '蓝牌':
|
||||
box_color = (0, 0, 255) # 蓝色
|
||||
else:
|
||||
box_color = (128, 128, 128) # 灰色
|
||||
|
||||
# 绘制关键点和连线
|
||||
if len(keypoints) >= 4 and not incomplete:
|
||||
|
||||
Reference in New Issue
Block a user