更新接口
This commit is contained in:
		@@ -1,328 +0,0 @@
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
import cv2
 | 
			
		||||
import numpy as np
 | 
			
		||||
import os
 | 
			
		||||
import sys
 | 
			
		||||
from torch.autograd import Variable
 | 
			
		||||
from PIL import Image
 | 
			
		||||
 | 
			
		||||
# 添加父目录到路径,以便导入模型和数据加载器
 | 
			
		||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
 | 
			
		||||
 | 
			
		||||
# LPRNet字符集定义(与训练时保持一致)
 | 
			
		||||
CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
 | 
			
		||||
         '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
 | 
			
		||||
         '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新',
 | 
			
		||||
         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 | 
			
		||||
         'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',
 | 
			
		||||
         'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
 | 
			
		||||
         'W', 'X', 'Y', 'Z', 'I', 'O', '-']
 | 
			
		||||
 | 
			
		||||
CHARS_DICT = {char: i for i, char in enumerate(CHARS)}
 | 
			
		||||
 | 
			
		||||
# 简化的LPRNet模型定义
 | 
			
		||||
class small_basic_block(nn.Module):
 | 
			
		||||
    def __init__(self, ch_in, ch_out):
 | 
			
		||||
        super(small_basic_block, self).__init__()
 | 
			
		||||
        self.block = nn.Sequential(
 | 
			
		||||
            nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),
 | 
			
		||||
            nn.ReLU(),
 | 
			
		||||
            nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),
 | 
			
		||||
            nn.ReLU(),
 | 
			
		||||
            nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),
 | 
			
		||||
            nn.ReLU(),
 | 
			
		||||
            nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        return self.block(x)
 | 
			
		||||
 | 
			
		||||
class LPRNet(nn.Module):
 | 
			
		||||
    def __init__(self, lpr_max_len, phase, class_num, dropout_rate):
 | 
			
		||||
        super(LPRNet, self).__init__()
 | 
			
		||||
        self.phase = phase
 | 
			
		||||
        self.lpr_max_len = lpr_max_len
 | 
			
		||||
        self.class_num = class_num
 | 
			
		||||
        self.backbone = nn.Sequential(
 | 
			
		||||
            nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0
 | 
			
		||||
            nn.BatchNorm2d(num_features=64),
 | 
			
		||||
            nn.ReLU(),  # 2
 | 
			
		||||
            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),
 | 
			
		||||
            small_basic_block(ch_in=64, ch_out=128),    # *** 4 ***
 | 
			
		||||
            nn.BatchNorm2d(num_features=128),
 | 
			
		||||
            nn.ReLU(),  # 6
 | 
			
		||||
            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),
 | 
			
		||||
            small_basic_block(ch_in=64, ch_out=256),   # 8
 | 
			
		||||
            nn.BatchNorm2d(num_features=256),
 | 
			
		||||
            nn.ReLU(),  # 10
 | 
			
		||||
            small_basic_block(ch_in=256, ch_out=256),   # *** 11 ***
 | 
			
		||||
            nn.BatchNorm2d(num_features=256),
 | 
			
		||||
            nn.ReLU(),  # 13
 | 
			
		||||
            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)),  # 14
 | 
			
		||||
            nn.Dropout(dropout_rate),
 | 
			
		||||
            nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1), # 16
 | 
			
		||||
            nn.BatchNorm2d(num_features=256),
 | 
			
		||||
            nn.ReLU(),  # 18
 | 
			
		||||
            nn.Dropout(dropout_rate),
 | 
			
		||||
            nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # 20
 | 
			
		||||
            nn.BatchNorm2d(num_features=class_num),
 | 
			
		||||
            nn.ReLU(),  # 22
 | 
			
		||||
        )
 | 
			
		||||
        self.container = nn.Sequential(
 | 
			
		||||
            nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1,1), stride=(1,1)),
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        keep_features = list()
 | 
			
		||||
        for i, layer in enumerate(self.backbone.children()):
 | 
			
		||||
            x = layer(x)
 | 
			
		||||
            if i in [2, 6, 13, 22]: # [2, 4, 8, 11, 22]
 | 
			
		||||
                keep_features.append(x)
 | 
			
		||||
 | 
			
		||||
        global_context = list()
 | 
			
		||||
        for i, f in enumerate(keep_features):
 | 
			
		||||
            if i in [0, 1]:
 | 
			
		||||
                f = nn.AvgPool2d(kernel_size=5, stride=5)(f)
 | 
			
		||||
            if i in [2]:
 | 
			
		||||
                f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)
 | 
			
		||||
            f_pow = torch.pow(f, 2)
 | 
			
		||||
            f_mean = torch.mean(f_pow)
 | 
			
		||||
            f = torch.div(f, f_mean)
 | 
			
		||||
            global_context.append(f)
 | 
			
		||||
 | 
			
		||||
        x = torch.cat(global_context, 1)
 | 
			
		||||
        x = self.container(x)
 | 
			
		||||
        logits = torch.mean(x, dim=2)
 | 
			
		||||
 | 
			
		||||
        return logits
 | 
			
		||||
 | 
			
		||||
class LPRNetInference:
 | 
			
		||||
    def __init__(self, model_path=None, img_size=[94, 24], lpr_max_len=8, dropout_rate=0.5):
 | 
			
		||||
        """
 | 
			
		||||
        初始化LPRNet推理类
 | 
			
		||||
        Args:
 | 
			
		||||
            model_path: 训练好的模型权重文件路径
 | 
			
		||||
            img_size: 输入图像尺寸 [width, height]
 | 
			
		||||
            lpr_max_len: 车牌最大长度
 | 
			
		||||
            dropout_rate: dropout率
 | 
			
		||||
        """
 | 
			
		||||
        self.img_size = img_size
 | 
			
		||||
        self.lpr_max_len = lpr_max_len
 | 
			
		||||
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 | 
			
		||||
        
 | 
			
		||||
        # 设置默认模型路径
 | 
			
		||||
        if model_path is None:
 | 
			
		||||
            current_dir = os.path.dirname(os.path.abspath(__file__))
 | 
			
		||||
            model_path = os.path.join(current_dir, 'LPRNet__iteration_74000.pth')
 | 
			
		||||
        
 | 
			
		||||
        # 初始化模型
 | 
			
		||||
        self.model = LPRNet(lpr_max_len=lpr_max_len, phase=False, class_num=len(CHARS), dropout_rate=dropout_rate)
 | 
			
		||||
        
 | 
			
		||||
        # 加载模型权重
 | 
			
		||||
        if model_path and os.path.exists(model_path):
 | 
			
		||||
            print(f"Loading LPRNet model from {model_path}")
 | 
			
		||||
            try:
 | 
			
		||||
                self.model.load_state_dict(torch.load(model_path, map_location=self.device))
 | 
			
		||||
                print("LPRNet模型权重加载成功")
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                print(f"Warning: 加载模型权重失败: {e}. 使用随机权重.")
 | 
			
		||||
        else:
 | 
			
		||||
            print(f"Warning: 模型文件不存在或未指定: {model_path}. 使用随机权重.")
 | 
			
		||||
        
 | 
			
		||||
        self.model.to(self.device)
 | 
			
		||||
        self.model.eval()
 | 
			
		||||
        
 | 
			
		||||
        print(f"LPRNet模型加载完成,设备: {self.device}")
 | 
			
		||||
        print(f"模型参数数量: {sum(p.numel() for p in self.model.parameters()):,}")
 | 
			
		||||
    
 | 
			
		||||
    def preprocess_image(self, image_array):
 | 
			
		||||
        """
 | 
			
		||||
        预处理图像数组 - 使用与训练时相同的预处理方式
 | 
			
		||||
        Args:
 | 
			
		||||
            image_array: numpy数组格式的图像 (H, W, C)
 | 
			
		||||
        Returns:
 | 
			
		||||
            preprocessed_image: 预处理后的图像tensor
 | 
			
		||||
        """
 | 
			
		||||
        if image_array is None:
 | 
			
		||||
            raise ValueError("Input image is None")
 | 
			
		||||
        
 | 
			
		||||
        # 确保图像是numpy数组
 | 
			
		||||
        if not isinstance(image_array, np.ndarray):
 | 
			
		||||
            raise ValueError("Input must be numpy array")
 | 
			
		||||
        
 | 
			
		||||
        # 检查图像维度
 | 
			
		||||
        if len(image_array.shape) != 3:
 | 
			
		||||
            raise ValueError(f"Expected 3D image array, got {len(image_array.shape)}D")
 | 
			
		||||
        
 | 
			
		||||
        height, width, channels = image_array.shape
 | 
			
		||||
        if channels != 3:
 | 
			
		||||
            raise ValueError(f"Expected 3 channels, got {channels}")
 | 
			
		||||
        
 | 
			
		||||
        # 调整图像尺寸到模型要求的尺寸
 | 
			
		||||
        if height != self.img_size[1] or width != self.img_size[0]:
 | 
			
		||||
            image_array = cv2.resize(image_array, tuple(self.img_size))
 | 
			
		||||
        
 | 
			
		||||
        # 使用与训练时相同的预处理方式
 | 
			
		||||
        image_array = image_array.astype('float32')
 | 
			
		||||
        image_array -= 127.5
 | 
			
		||||
        image_array *= 0.0078125
 | 
			
		||||
        image_array = np.transpose(image_array, (2, 0, 1))  # HWC -> CHW
 | 
			
		||||
        
 | 
			
		||||
        # 转换为tensor并添加batch维度
 | 
			
		||||
        image_tensor = torch.from_numpy(image_array).unsqueeze(0)
 | 
			
		||||
        
 | 
			
		||||
        return image_tensor
 | 
			
		||||
    
 | 
			
		||||
    def decode_prediction(self, logits):
 | 
			
		||||
        """
 | 
			
		||||
        解码模型预测结果 - 使用正确的CTC贪婪解码
 | 
			
		||||
        Args:
 | 
			
		||||
            logits: 模型输出的logits [batch_size, num_classes, sequence_length]
 | 
			
		||||
        Returns:
 | 
			
		||||
            predicted_text: 预测的车牌号码
 | 
			
		||||
        """
 | 
			
		||||
        # 转换为numpy进行处理
 | 
			
		||||
        prebs = logits.cpu().detach().numpy()
 | 
			
		||||
        preb = prebs[0, :, :]  # 取第一个batch [num_classes, sequence_length]
 | 
			
		||||
        
 | 
			
		||||
        # 贪婪解码:对每个时间步选择最大概率的字符
 | 
			
		||||
        preb_label = []
 | 
			
		||||
        for j in range(preb.shape[1]):  # 遍历每个时间步
 | 
			
		||||
            preb_label.append(np.argmax(preb[:, j], axis=0))
 | 
			
		||||
        
 | 
			
		||||
        # CTC解码:去除重复字符和空白字符
 | 
			
		||||
        no_repeat_blank_label = []
 | 
			
		||||
        pre_c = preb_label[0]
 | 
			
		||||
        
 | 
			
		||||
        # 处理第一个字符
 | 
			
		||||
        if pre_c != len(CHARS) - 1:  # 不是空白字符
 | 
			
		||||
            no_repeat_blank_label.append(pre_c)
 | 
			
		||||
        
 | 
			
		||||
        # 处理后续字符
 | 
			
		||||
        for c in preb_label:
 | 
			
		||||
            if (pre_c == c) or (c == len(CHARS) - 1):  # 重复字符或空白字符
 | 
			
		||||
                if c == len(CHARS) - 1:
 | 
			
		||||
                    pre_c = c
 | 
			
		||||
                continue
 | 
			
		||||
            no_repeat_blank_label.append(c)
 | 
			
		||||
            pre_c = c
 | 
			
		||||
        
 | 
			
		||||
        # 转换为字符
 | 
			
		||||
        decoded_chars = [CHARS[idx] for idx in no_repeat_blank_label]
 | 
			
		||||
        return ''.join(decoded_chars)
 | 
			
		||||
    
 | 
			
		||||
    def predict(self, image_array):
 | 
			
		||||
        """
 | 
			
		||||
        预测单张图像的车牌号码
 | 
			
		||||
        Args:
 | 
			
		||||
            image_array: numpy数组格式的图像
 | 
			
		||||
        Returns:
 | 
			
		||||
            prediction: 预测的车牌号码
 | 
			
		||||
            confidence: 预测置信度
 | 
			
		||||
        """
 | 
			
		||||
        try:
 | 
			
		||||
            # 预处理图像
 | 
			
		||||
            image = self.preprocess_image(image_array)
 | 
			
		||||
            if image is None:
 | 
			
		||||
                return None, 0.0
 | 
			
		||||
            
 | 
			
		||||
            image = image.to(self.device)
 | 
			
		||||
            
 | 
			
		||||
            # 模型推理
 | 
			
		||||
            with torch.no_grad():
 | 
			
		||||
                logits = self.model(image)
 | 
			
		||||
                # logits shape: [batch_size, class_num, sequence_length]
 | 
			
		||||
                
 | 
			
		||||
                # 计算置信度(使用softmax后的最大概率平均值)
 | 
			
		||||
                probs = torch.softmax(logits, dim=1)
 | 
			
		||||
                max_probs = torch.max(probs, dim=1)[0]
 | 
			
		||||
                confidence = torch.mean(max_probs).item()
 | 
			
		||||
                
 | 
			
		||||
                # 解码预测结果
 | 
			
		||||
                prediction = self.decode_prediction(logits)
 | 
			
		||||
            
 | 
			
		||||
            return prediction, confidence
 | 
			
		||||
            
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            print(f"预测图像失败: {e}")
 | 
			
		||||
            return None, 0.0
 | 
			
		||||
 | 
			
		||||
# 全局变量
 | 
			
		||||
lpr_model = None
 | 
			
		||||
 | 
			
		||||
def LPRNinitialize_model():
 | 
			
		||||
    """
 | 
			
		||||
    初始化LPRNet模型
 | 
			
		||||
    
 | 
			
		||||
    返回:
 | 
			
		||||
        bool: 初始化是否成功
 | 
			
		||||
    """
 | 
			
		||||
    global lpr_model
 | 
			
		||||
    
 | 
			
		||||
    try:
 | 
			
		||||
        # 模型权重文件路径
 | 
			
		||||
        model_path = os.path.join(os.path.dirname(__file__), 'LPRNet__iteration_74000.pth')
 | 
			
		||||
        
 | 
			
		||||
        # 创建推理对象
 | 
			
		||||
        lpr_model = LPRNetInference(model_path)
 | 
			
		||||
        
 | 
			
		||||
        print("LPRNet模型初始化完成")
 | 
			
		||||
        return True
 | 
			
		||||
        
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        print(f"LPRNet模型初始化失败: {e}")
 | 
			
		||||
        import traceback
 | 
			
		||||
        traceback.print_exc()
 | 
			
		||||
        return False
 | 
			
		||||
 | 
			
		||||
def LPRNmodel_predict(image_array):
 | 
			
		||||
    """
 | 
			
		||||
    LPRNet车牌号识别接口函数
 | 
			
		||||
    
 | 
			
		||||
    参数:
 | 
			
		||||
        image_array: numpy数组格式的车牌图像,已经过矫正处理
 | 
			
		||||
    
 | 
			
		||||
    返回:
 | 
			
		||||
        list: 包含最多8个字符的列表,代表车牌号的每个字符
 | 
			
		||||
              例如: ['京', 'A', '1', '2', '3', '4', '5'] (蓝牌7位)
 | 
			
		||||
                   ['京', 'A', 'D', '1', '2', '3', '4', '5'] (绿牌8位)
 | 
			
		||||
    """
 | 
			
		||||
    global lpr_model
 | 
			
		||||
    
 | 
			
		||||
    if lpr_model is None:
 | 
			
		||||
        print("LPRNet模型未初始化,请先调用LPRNinitialize_model()")
 | 
			
		||||
        return ['待', '识', '别', '0', '0', '0', '0', '0']
 | 
			
		||||
    
 | 
			
		||||
    try:
 | 
			
		||||
        # 预测车牌号
 | 
			
		||||
        predicted_text, confidence = lpr_model.predict(image_array)
 | 
			
		||||
        
 | 
			
		||||
        if predicted_text is None:
 | 
			
		||||
            print("LPRNet识别失败")
 | 
			
		||||
            return ['识', '别', '失', '败', '0', '0', '0', '0']
 | 
			
		||||
        
 | 
			
		||||
        print(f"LPRNet识别结果: {predicted_text}, 置信度: {confidence:.3f}")
 | 
			
		||||
        
 | 
			
		||||
        # 将字符串转换为字符列表
 | 
			
		||||
        char_list = list(predicted_text)
 | 
			
		||||
        
 | 
			
		||||
        # 确保返回至少7个字符,最多8个字符
 | 
			
		||||
        if len(char_list) < 7:
 | 
			
		||||
            # 如果识别结果少于7个字符,用'0'补齐到7位
 | 
			
		||||
            char_list.extend(['0'] * (7 - len(char_list)))
 | 
			
		||||
        elif len(char_list) > 8:
 | 
			
		||||
            # 如果识别结果多于8个字符,截取前8个
 | 
			
		||||
            char_list = char_list[:8]
 | 
			
		||||
        
 | 
			
		||||
        # 如果是7位,补齐到8位以保持接口一致性(第8位用空字符或占位符)
 | 
			
		||||
        if len(char_list) == 7:
 | 
			
		||||
            char_list.append('')  # 添加空字符作为第8位占位符
 | 
			
		||||
        
 | 
			
		||||
        return char_list
 | 
			
		||||
        
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        print(f"LPRNet识别失败: {e}")
 | 
			
		||||
        import traceback
 | 
			
		||||
        traceback.print_exc()
 | 
			
		||||
        return ['识', '别', '失', '败', '0', '0', '0', '0']
 | 
			
		||||
		Reference in New Issue
	
	Block a user