This commit is contained in:
spdis 2025-09-02 11:40:41 +08:00
parent 739cd1d914
commit 95aa6b6bba
3 changed files with 305 additions and 9 deletions

View File

@ -0,0 +1,284 @@
import torch
import torch.nn as nn
import numpy as np
import cv2
from torch.autograd import Variable
import os
# 字符集定义
CHARS = ['', '', '', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '',
'',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',
'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z', 'I', 'O', '-'
]
CHARS_DICT = {char: i for i, char in enumerate(CHARS)}
# 全局变量
lprnet_model = None
device = None
class small_basic_block(nn.Module):
def __init__(self, ch_in, ch_out):
super(small_basic_block, self).__init__()
self.block = nn.Sequential(
nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),
nn.ReLU(),
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),
nn.ReLU(),
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),
nn.ReLU(),
nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),
)
def forward(self, x):
return self.block(x)
class LPRNet(nn.Module):
def __init__(self, lpr_max_len, phase, class_num, dropout_rate):
super(LPRNet, self).__init__()
self.phase = phase
self.lpr_max_len = lpr_max_len
self.class_num = class_num
self.backbone = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0
nn.BatchNorm2d(num_features=64),
nn.ReLU(), # 2
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),
small_basic_block(ch_in=64, ch_out=128), # *** 4 ***
nn.BatchNorm2d(num_features=128),
nn.ReLU(), # 6
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),
small_basic_block(ch_in=64, ch_out=256), # 8
nn.BatchNorm2d(num_features=256),
nn.ReLU(), # 10
small_basic_block(ch_in=256, ch_out=256), # *** 11 ***
nn.BatchNorm2d(num_features=256), # 12
nn.ReLU(),
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)), # 14
nn.Dropout(dropout_rate),
nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1), # 16
nn.BatchNorm2d(num_features=256),
nn.ReLU(), # 18
nn.Dropout(dropout_rate),
nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # 20
nn.BatchNorm2d(num_features=class_num),
nn.ReLU(), # *** 22 ***
)
self.container = nn.Sequential(
nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1, 1), stride=(1, 1)),
)
def forward(self, x):
keep_features = list()
for i, layer in enumerate(self.backbone.children()):
x = layer(x)
if i in [2, 6, 13, 22]: # [2, 4, 8, 11, 22]
keep_features.append(x)
global_context = list()
for i, f in enumerate(keep_features):
if i in [0, 1]:
f = nn.AvgPool2d(kernel_size=5, stride=5)(f)
if i in [2]:
f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)
f_pow = torch.pow(f, 2)
f_mean = torch.mean(f_pow)
f = torch.div(f, f_mean)
global_context.append(f)
x = torch.cat(global_context, 1)
x = self.container(x)
logits = torch.mean(x, dim=2)
return logits
def build_lprnet(lpr_max_len=8, phase=False, class_num=66, dropout_rate=0.5):
"""构建LPRNet模型"""
Net = LPRNet(lpr_max_len, phase, class_num, dropout_rate)
if phase == "train":
return Net.train()
else:
return Net.eval()
def preprocess_image(image_array, img_size=(94, 24)):
"""图像预处理"""
# 确保输入是numpy数组
if not isinstance(image_array, np.ndarray):
raise ValueError("输入必须是numpy数组")
# 调整图像尺寸
height, width = image_array.shape[:2]
if height != img_size[1] or width != img_size[0]:
image_array = cv2.resize(image_array, img_size)
# 归一化到[0,1]
image_array = image_array.astype(np.float32) / 255.0
# 转换为CHW格式
if len(image_array.shape) == 3:
image_array = np.transpose(image_array, (2, 0, 1))
# 添加batch维度
image_array = np.expand_dims(image_array, axis=0)
return image_array
def greedy_decode(prebs):
"""贪婪解码"""
preb_labels = list()
for i in range(prebs.shape[0]):
preb = prebs[i, :, :]
preb_label = list()
for j in range(preb.shape[1]):
preb_label.append(np.argmax(preb[:, j], axis=0))
no_repeat_blank_label = list()
pre_c = preb_label[0]
if pre_c != len(CHARS) - 1:
no_repeat_blank_label.append(pre_c)
for c in preb_label: # 去除重复标签和空白标签
if (pre_c == c) or (c == len(CHARS) - 1):
if c == len(CHARS) - 1:
pre_c = c
continue
no_repeat_blank_label.append(c)
pre_c = c
preb_labels.append(no_repeat_blank_label)
return preb_labels
def LPRNinitialize_model(model_path=None):
"""初始化LPRNet模型"""
global lprnet_model, device
try:
# 设置设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
# 构建模型
lprnet_model = build_lprnet(
lpr_max_len=8,
phase=False,
class_num=len(CHARS),
dropout_rate=0.5
)
# 加载预训练权重
if model_path is None:
model_path = os.path.join(os.path.dirname(__file__), "Final_LPRNet_model.pth")
if os.path.exists(model_path):
checkpoint = torch.load(model_path, map_location=device)
lprnet_model.load_state_dict(checkpoint)
print(f"成功加载预训练模型: {model_path}")
else:
print(f"警告: 未找到预训练模型文件 {model_path},使用随机初始化权重")
lprnet_model.to(device)
lprnet_model.eval()
print("LPRNet模型初始化完成")
# 统计模型参数
total_params = sum(p.numel() for p in lprnet_model.parameters())
print(f"LPRNet模型参数数量: {total_params:,}")
return True
except Exception as e:
print(f"LPRNet模型初始化失败: {e}")
import traceback
traceback.print_exc()
return False
def LPRNmodel_predict(image_array):
"""
LPRNet车牌号识别接口函数
参数:
image_array: numpy数组格式的车牌图像已经过矫正处理
返回:
list: 包含7个字符的列表代表车牌号的每个字符
例如: ['', 'A', '1', '2', '3', '4', '5']
"""
global lprnet_model, device
if lprnet_model is None:
print("LPRNet模型未初始化请先调用LPRNinitialize_model()")
return ['', '', '', '0', '0', '0', '0']
try:
# 预处理图像
processed_image = preprocess_image(image_array)
# 转换为tensor
input_tensor = torch.from_numpy(processed_image).float()
input_tensor = input_tensor.to(device)
# 模型推理
with torch.no_grad():
prebs = lprnet_model(input_tensor)
prebs = prebs.cpu().detach().numpy()
# 贪婪解码
preb_labels = greedy_decode(prebs)
if len(preb_labels) > 0 and len(preb_labels[0]) > 0:
# 将索引转换为字符
predicted_chars = [CHARS[idx] for idx in preb_labels[0] if idx < len(CHARS)]
print(f"LPRNet识别结果: {''.join(predicted_chars)}")
# 确保返回7个字符车牌标准长度
if len(predicted_chars) < 7:
# 如果识别结果少于7个字符用'0'补齐
predicted_chars.extend(['0'] * (7 - len(predicted_chars)))
elif len(predicted_chars) > 7:
# 如果识别结果多于7个字符截取前7个
predicted_chars = predicted_chars[:7]
return predicted_chars
else:
print("LPRNet识别结果为空")
return ['', '', '', '', '0', '0', '0']
except Exception as e:
print(f"LPRNet识别失败: {e}")
import traceback
traceback.print_exc()
return ['', '', '', '', '0', '0', '0']
# 为了保持与其他模块的一致性,提供一个处理器类
class LPRProcessor:
def __init__(self):
self.initialized = False
def initialize(self, model_path=None):
"""初始化模型"""
self.initialized = LPRNinitialize_model(model_path)
return self.initialized
def predict(self, image_array):
"""预测接口"""
if not self.initialized:
print("模型未初始化")
return ['', '', '', '', '0', '0', '0']
return LPRNmodel_predict(image_array)
# 创建全局处理器实例
_processor = LPRProcessor()
def get_lpr_processor():
"""获取LPR处理器实例"""
return _processor

View File

@ -14,8 +14,12 @@ License_plate_recognition/
│ └── yolo11s-pose42.pt # YOLO pose模型文件
├── OCR_part/ # OCR识别模块
│ └── ocr_interface.py # OCR接口占位
└── CRNN_part/ # CRNN识别模块
└── crnn_interface.py # CRNN
├── CRNN_part/ # CRNN识别模块
│ └── crnn_interface.py # CRNN接口
└── LPRNET_part/ # LPRNet识别模块
├── lpr_interface.py # LPRNet接口
├── Final_LPRNet_model.pth # 预训练模型文件
└── will_delete/ # 参考资料(可删除)
```
## 功能特性
@ -44,8 +48,10 @@ License_plate_recognition/
### 5. 模块化设计
- yolopart负责车牌定位和矫正
- OCR_part/CRNN_part负责车牌号识别接口已预留
- 各模块独立,便于维护和扩展
- OCR_part基于PaddleOCR的车牌号识别模块
- CRNN_part基于CRNN网络的车牌号识别模块
- LPRNET_part基于LPRNet网络的车牌号识别模块
- 各模块独立便于维护和扩展可通过修改main.py中的导入语句切换识别模块
## 安装和使用

16
main.py
View File

@ -9,11 +9,17 @@ from PyQt5.QtCore import QTimer, Qt, pyqtSignal, QThread
from PyQt5.QtGui import QImage, QPixmap, QFont, QPainter, QPen, QColor
import os
from yolopart.detector import LicensePlateYOLO
from OCR_part.ocr_interface import LPRNmodel_predict
from OCR_part.ocr_interface import LPRNinitialize_model
# 使用CRNN进行车牌字符识别可选同时也要修改第395396行
# from CRNN_part.crnn_interface import LPRNmodel_predict
# from CRNN_part.crnn_interface import LPRNinitialize_model
#选择使用哪个模块
from LPRNET_part.lpr_interface import LPRNmodel_predict
from LPRNET_part.lpr_interface import LPRNinitialize_model
#使用OCR
#from OCR_part.ocr_interface import LPRNmodel_predict
#from OCR_part.ocr_interface import LPRNinitialize_model
# 使用CRNN
#from CRNN_part.crnn_interface import LPRNmodel_predict
#from CRNN_part.crnn_interface import LPRNinitialize_model
class CameraThread(QThread):
"""摄像头线程类"""