284 lines
9.6 KiB
Python
284 lines
9.6 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
import numpy as np
|
||
import cv2
|
||
from torch.autograd import Variable
|
||
import os
|
||
|
||
|
||
# 字符集定义
|
||
CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
|
||
'苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
|
||
'桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁',
|
||
'新',
|
||
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
|
||
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',
|
||
'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
|
||
'W', 'X', 'Y', 'Z', 'I', 'O', '-'
|
||
]
|
||
|
||
CHARS_DICT = {char: i for i, char in enumerate(CHARS)}
|
||
|
||
# 全局变量
|
||
lprnet_model = None
|
||
device = None
|
||
|
||
class small_basic_block(nn.Module):
|
||
def __init__(self, ch_in, ch_out):
|
||
super(small_basic_block, self).__init__()
|
||
self.block = nn.Sequential(
|
||
nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),
|
||
nn.ReLU(),
|
||
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),
|
||
nn.ReLU(),
|
||
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),
|
||
nn.ReLU(),
|
||
nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),
|
||
)
|
||
|
||
def forward(self, x):
|
||
return self.block(x)
|
||
|
||
class LPRNet(nn.Module):
|
||
def __init__(self, lpr_max_len, phase, class_num, dropout_rate):
|
||
super(LPRNet, self).__init__()
|
||
self.phase = phase
|
||
self.lpr_max_len = lpr_max_len
|
||
self.class_num = class_num
|
||
self.backbone = nn.Sequential(
|
||
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0
|
||
nn.BatchNorm2d(num_features=64),
|
||
nn.ReLU(), # 2
|
||
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),
|
||
small_basic_block(ch_in=64, ch_out=128), # *** 4 ***
|
||
nn.BatchNorm2d(num_features=128),
|
||
nn.ReLU(), # 6
|
||
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),
|
||
small_basic_block(ch_in=64, ch_out=256), # 8
|
||
nn.BatchNorm2d(num_features=256),
|
||
nn.ReLU(), # 10
|
||
small_basic_block(ch_in=256, ch_out=256), # *** 11 ***
|
||
nn.BatchNorm2d(num_features=256), # 12
|
||
nn.ReLU(),
|
||
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)), # 14
|
||
nn.Dropout(dropout_rate),
|
||
nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1), # 16
|
||
nn.BatchNorm2d(num_features=256),
|
||
nn.ReLU(), # 18
|
||
nn.Dropout(dropout_rate),
|
||
nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # 20
|
||
nn.BatchNorm2d(num_features=class_num),
|
||
nn.ReLU(), # *** 22 ***
|
||
)
|
||
self.container = nn.Sequential(
|
||
nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1, 1), stride=(1, 1)),
|
||
)
|
||
|
||
def forward(self, x):
|
||
keep_features = list()
|
||
for i, layer in enumerate(self.backbone.children()):
|
||
x = layer(x)
|
||
if i in [2, 6, 13, 22]: # [2, 4, 8, 11, 22]
|
||
keep_features.append(x)
|
||
|
||
global_context = list()
|
||
for i, f in enumerate(keep_features):
|
||
if i in [0, 1]:
|
||
f = nn.AvgPool2d(kernel_size=5, stride=5)(f)
|
||
if i in [2]:
|
||
f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)
|
||
f_pow = torch.pow(f, 2)
|
||
f_mean = torch.mean(f_pow)
|
||
f = torch.div(f, f_mean)
|
||
global_context.append(f)
|
||
|
||
x = torch.cat(global_context, 1)
|
||
x = self.container(x)
|
||
logits = torch.mean(x, dim=2)
|
||
|
||
return logits
|
||
|
||
def build_lprnet(lpr_max_len=8, phase=False, class_num=66, dropout_rate=0.5):
|
||
"""构建LPRNet模型"""
|
||
Net = LPRNet(lpr_max_len, phase, class_num, dropout_rate)
|
||
|
||
if phase == "train":
|
||
return Net.train()
|
||
else:
|
||
return Net.eval()
|
||
|
||
def preprocess_image(image_array, img_size=(94, 24)):
|
||
"""图像预处理"""
|
||
# 确保输入是numpy数组
|
||
if not isinstance(image_array, np.ndarray):
|
||
raise ValueError("输入必须是numpy数组")
|
||
|
||
# 调整图像尺寸
|
||
height, width = image_array.shape[:2]
|
||
if height != img_size[1] or width != img_size[0]:
|
||
image_array = cv2.resize(image_array, img_size)
|
||
|
||
# 归一化到[0,1]
|
||
image_array = image_array.astype(np.float32) / 255.0
|
||
|
||
# 转换为CHW格式
|
||
if len(image_array.shape) == 3:
|
||
image_array = np.transpose(image_array, (2, 0, 1))
|
||
|
||
# 添加batch维度
|
||
image_array = np.expand_dims(image_array, axis=0)
|
||
|
||
return image_array
|
||
|
||
def greedy_decode(prebs):
|
||
"""贪婪解码"""
|
||
preb_labels = list()
|
||
for i in range(prebs.shape[0]):
|
||
preb = prebs[i, :, :]
|
||
preb_label = list()
|
||
for j in range(preb.shape[1]):
|
||
preb_label.append(np.argmax(preb[:, j], axis=0))
|
||
|
||
no_repeat_blank_label = list()
|
||
pre_c = preb_label[0]
|
||
if pre_c != len(CHARS) - 1:
|
||
no_repeat_blank_label.append(pre_c)
|
||
|
||
for c in preb_label: # 去除重复标签和空白标签
|
||
if (pre_c == c) or (c == len(CHARS) - 1):
|
||
if c == len(CHARS) - 1:
|
||
pre_c = c
|
||
continue
|
||
no_repeat_blank_label.append(c)
|
||
pre_c = c
|
||
|
||
preb_labels.append(no_repeat_blank_label)
|
||
|
||
return preb_labels
|
||
|
||
def LPRNinitialize_model(model_path=None):
|
||
"""初始化LPRNet模型"""
|
||
global lprnet_model, device
|
||
|
||
try:
|
||
# 设置设备
|
||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||
print(f"使用设备: {device}")
|
||
|
||
# 构建模型
|
||
lprnet_model = build_lprnet(
|
||
lpr_max_len=8,
|
||
phase=False,
|
||
class_num=len(CHARS),
|
||
dropout_rate=0.5
|
||
)
|
||
|
||
# 加载预训练权重
|
||
if model_path is None:
|
||
model_path = os.path.join(os.path.dirname(__file__), "Final_LPRNet_model.pth")
|
||
|
||
if os.path.exists(model_path):
|
||
checkpoint = torch.load(model_path, map_location=device)
|
||
lprnet_model.load_state_dict(checkpoint)
|
||
print(f"成功加载预训练模型: {model_path}")
|
||
else:
|
||
print(f"警告: 未找到预训练模型文件 {model_path},使用随机初始化权重")
|
||
|
||
lprnet_model.to(device)
|
||
lprnet_model.eval()
|
||
|
||
print("LPRNet模型初始化完成")
|
||
|
||
# 统计模型参数
|
||
total_params = sum(p.numel() for p in lprnet_model.parameters())
|
||
print(f"LPRNet模型参数数量: {total_params:,}")
|
||
|
||
return True
|
||
|
||
except Exception as e:
|
||
print(f"LPRNet模型初始化失败: {e}")
|
||
import traceback
|
||
traceback.print_exc()
|
||
return False
|
||
|
||
def LPRNmodel_predict(image_array):
|
||
"""
|
||
LPRNet车牌号识别接口函数
|
||
|
||
参数:
|
||
image_array: numpy数组格式的车牌图像,已经过矫正处理
|
||
|
||
返回:
|
||
list: 包含7个字符的列表,代表车牌号的每个字符
|
||
例如: ['京', 'A', '1', '2', '3', '4', '5']
|
||
"""
|
||
global lprnet_model, device
|
||
|
||
if lprnet_model is None:
|
||
print("LPRNet模型未初始化,请先调用LPRNinitialize_model()")
|
||
return ['待', '识', '别', '0', '0', '0', '0']
|
||
|
||
try:
|
||
# 预处理图像
|
||
processed_image = preprocess_image(image_array)
|
||
|
||
# 转换为tensor
|
||
input_tensor = torch.from_numpy(processed_image).float()
|
||
input_tensor = input_tensor.to(device)
|
||
|
||
# 模型推理
|
||
with torch.no_grad():
|
||
prebs = lprnet_model(input_tensor)
|
||
prebs = prebs.cpu().detach().numpy()
|
||
|
||
# 贪婪解码
|
||
preb_labels = greedy_decode(prebs)
|
||
|
||
if len(preb_labels) > 0 and len(preb_labels[0]) > 0:
|
||
# 将索引转换为字符
|
||
predicted_chars = [CHARS[idx] for idx in preb_labels[0] if idx < len(CHARS)]
|
||
|
||
print(f"LPRNet识别结果: {''.join(predicted_chars)}")
|
||
|
||
# 确保返回7个字符(车牌标准长度)
|
||
if len(predicted_chars) < 7:
|
||
# 如果识别结果少于7个字符,用'0'补齐
|
||
predicted_chars.extend(['0'] * (7 - len(predicted_chars)))
|
||
elif len(predicted_chars) > 7:
|
||
# 如果识别结果多于7个字符,截取前7个
|
||
predicted_chars = predicted_chars[:7]
|
||
|
||
return predicted_chars
|
||
else:
|
||
print("LPRNet识别结果为空")
|
||
return ['识', '别', '为', '空', '0', '0', '0']
|
||
|
||
except Exception as e:
|
||
print(f"LPRNet识别失败: {e}")
|
||
import traceback
|
||
traceback.print_exc()
|
||
return ['识', '别', '失', '败', '0', '0', '0']
|
||
|
||
# 为了保持与其他模块的一致性,提供一个处理器类
|
||
class LPRProcessor:
|
||
def __init__(self):
|
||
self.initialized = False
|
||
|
||
def initialize(self, model_path=None):
|
||
"""初始化模型"""
|
||
self.initialized = LPRNinitialize_model(model_path)
|
||
return self.initialized
|
||
|
||
def predict(self, image_array):
|
||
"""预测接口"""
|
||
if not self.initialized:
|
||
print("模型未初始化")
|
||
return ['未', '初', '始', '化', '0', '0', '0']
|
||
return LPRNmodel_predict(image_array)
|
||
|
||
# 创建全局处理器实例
|
||
_processor = LPRProcessor()
|
||
|
||
def get_lpr_processor():
|
||
"""获取LPR处理器实例"""
|
||
return _processor |