LPR
This commit is contained in:
		
							
								
								
									
										284
									
								
								LPRNET_part/lpr_interface.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										284
									
								
								LPRNET_part/lpr_interface.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,284 @@
 | 
				
			|||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import torch.nn as nn
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import cv2
 | 
				
			||||||
 | 
					from torch.autograd import Variable
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# 字符集定义
 | 
				
			||||||
 | 
					CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
 | 
				
			||||||
 | 
					         '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
 | 
				
			||||||
 | 
					         '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁',
 | 
				
			||||||
 | 
					         '新',
 | 
				
			||||||
 | 
					         '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
 | 
				
			||||||
 | 
					         'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',
 | 
				
			||||||
 | 
					         'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
 | 
				
			||||||
 | 
					         'W', 'X', 'Y', 'Z', 'I', 'O', '-'
 | 
				
			||||||
 | 
					         ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					CHARS_DICT = {char: i for i, char in enumerate(CHARS)}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# 全局变量
 | 
				
			||||||
 | 
					lprnet_model = None
 | 
				
			||||||
 | 
					device = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class small_basic_block(nn.Module):
 | 
				
			||||||
 | 
					    def __init__(self, ch_in, ch_out):
 | 
				
			||||||
 | 
					        super(small_basic_block, self).__init__()
 | 
				
			||||||
 | 
					        self.block = nn.Sequential(
 | 
				
			||||||
 | 
					            nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),
 | 
				
			||||||
 | 
					            nn.ReLU(),
 | 
				
			||||||
 | 
					            nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),
 | 
				
			||||||
 | 
					            nn.ReLU(),
 | 
				
			||||||
 | 
					            nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),
 | 
				
			||||||
 | 
					            nn.ReLU(),
 | 
				
			||||||
 | 
					            nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def forward(self, x):
 | 
				
			||||||
 | 
					        return self.block(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class LPRNet(nn.Module):
 | 
				
			||||||
 | 
					    def __init__(self, lpr_max_len, phase, class_num, dropout_rate):
 | 
				
			||||||
 | 
					        super(LPRNet, self).__init__()
 | 
				
			||||||
 | 
					        self.phase = phase
 | 
				
			||||||
 | 
					        self.lpr_max_len = lpr_max_len
 | 
				
			||||||
 | 
					        self.class_num = class_num
 | 
				
			||||||
 | 
					        self.backbone = nn.Sequential(
 | 
				
			||||||
 | 
					            nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0
 | 
				
			||||||
 | 
					            nn.BatchNorm2d(num_features=64),
 | 
				
			||||||
 | 
					            nn.ReLU(),  # 2
 | 
				
			||||||
 | 
					            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),
 | 
				
			||||||
 | 
					            small_basic_block(ch_in=64, ch_out=128),    # *** 4 ***
 | 
				
			||||||
 | 
					            nn.BatchNorm2d(num_features=128),
 | 
				
			||||||
 | 
					            nn.ReLU(),  # 6
 | 
				
			||||||
 | 
					            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),
 | 
				
			||||||
 | 
					            small_basic_block(ch_in=64, ch_out=256),   # 8
 | 
				
			||||||
 | 
					            nn.BatchNorm2d(num_features=256),
 | 
				
			||||||
 | 
					            nn.ReLU(),  # 10
 | 
				
			||||||
 | 
					            small_basic_block(ch_in=256, ch_out=256),   # *** 11 ***
 | 
				
			||||||
 | 
					            nn.BatchNorm2d(num_features=256),   # 12
 | 
				
			||||||
 | 
					            nn.ReLU(),
 | 
				
			||||||
 | 
					            nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)),  # 14
 | 
				
			||||||
 | 
					            nn.Dropout(dropout_rate),
 | 
				
			||||||
 | 
					            nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1),  # 16
 | 
				
			||||||
 | 
					            nn.BatchNorm2d(num_features=256),
 | 
				
			||||||
 | 
					            nn.ReLU(),  # 18
 | 
				
			||||||
 | 
					            nn.Dropout(dropout_rate),
 | 
				
			||||||
 | 
					            nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # 20
 | 
				
			||||||
 | 
					            nn.BatchNorm2d(num_features=class_num),
 | 
				
			||||||
 | 
					            nn.ReLU(),  # *** 22 ***
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        self.container = nn.Sequential(
 | 
				
			||||||
 | 
					            nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1, 1), stride=(1, 1)),
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def forward(self, x):
 | 
				
			||||||
 | 
					        keep_features = list()
 | 
				
			||||||
 | 
					        for i, layer in enumerate(self.backbone.children()):
 | 
				
			||||||
 | 
					            x = layer(x)
 | 
				
			||||||
 | 
					            if i in [2, 6, 13, 22]: # [2, 4, 8, 11, 22]
 | 
				
			||||||
 | 
					                keep_features.append(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        global_context = list()
 | 
				
			||||||
 | 
					        for i, f in enumerate(keep_features):
 | 
				
			||||||
 | 
					            if i in [0, 1]:
 | 
				
			||||||
 | 
					                f = nn.AvgPool2d(kernel_size=5, stride=5)(f)
 | 
				
			||||||
 | 
					            if i in [2]:
 | 
				
			||||||
 | 
					                f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)
 | 
				
			||||||
 | 
					            f_pow = torch.pow(f, 2)
 | 
				
			||||||
 | 
					            f_mean = torch.mean(f_pow)
 | 
				
			||||||
 | 
					            f = torch.div(f, f_mean)
 | 
				
			||||||
 | 
					            global_context.append(f)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        x = torch.cat(global_context, 1)
 | 
				
			||||||
 | 
					        x = self.container(x)
 | 
				
			||||||
 | 
					        logits = torch.mean(x, dim=2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return logits
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def build_lprnet(lpr_max_len=8, phase=False, class_num=66, dropout_rate=0.5):
 | 
				
			||||||
 | 
					    """构建LPRNet模型"""
 | 
				
			||||||
 | 
					    Net = LPRNet(lpr_max_len, phase, class_num, dropout_rate)
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    if phase == "train":
 | 
				
			||||||
 | 
					        return Net.train()
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        return Net.eval()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def preprocess_image(image_array, img_size=(94, 24)):
 | 
				
			||||||
 | 
					    """图像预处理"""
 | 
				
			||||||
 | 
					    # 确保输入是numpy数组
 | 
				
			||||||
 | 
					    if not isinstance(image_array, np.ndarray):
 | 
				
			||||||
 | 
					        raise ValueError("输入必须是numpy数组")
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # 调整图像尺寸
 | 
				
			||||||
 | 
					    height, width = image_array.shape[:2]
 | 
				
			||||||
 | 
					    if height != img_size[1] or width != img_size[0]:
 | 
				
			||||||
 | 
					        image_array = cv2.resize(image_array, img_size)
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # 归一化到[0,1]
 | 
				
			||||||
 | 
					    image_array = image_array.astype(np.float32) / 255.0
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # 转换为CHW格式
 | 
				
			||||||
 | 
					    if len(image_array.shape) == 3:
 | 
				
			||||||
 | 
					        image_array = np.transpose(image_array, (2, 0, 1))
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # 添加batch维度
 | 
				
			||||||
 | 
					    image_array = np.expand_dims(image_array, axis=0)
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    return image_array
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def greedy_decode(prebs):
 | 
				
			||||||
 | 
					    """贪婪解码"""
 | 
				
			||||||
 | 
					    preb_labels = list()
 | 
				
			||||||
 | 
					    for i in range(prebs.shape[0]):
 | 
				
			||||||
 | 
					        preb = prebs[i, :, :]
 | 
				
			||||||
 | 
					        preb_label = list()
 | 
				
			||||||
 | 
					        for j in range(preb.shape[1]):
 | 
				
			||||||
 | 
					            preb_label.append(np.argmax(preb[:, j], axis=0))
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        no_repeat_blank_label = list()
 | 
				
			||||||
 | 
					        pre_c = preb_label[0]
 | 
				
			||||||
 | 
					        if pre_c != len(CHARS) - 1:
 | 
				
			||||||
 | 
					            no_repeat_blank_label.append(pre_c)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        for c in preb_label:  # 去除重复标签和空白标签
 | 
				
			||||||
 | 
					            if (pre_c == c) or (c == len(CHARS) - 1):
 | 
				
			||||||
 | 
					                if c == len(CHARS) - 1:
 | 
				
			||||||
 | 
					                    pre_c = c
 | 
				
			||||||
 | 
					                continue
 | 
				
			||||||
 | 
					            no_repeat_blank_label.append(c)
 | 
				
			||||||
 | 
					            pre_c = c
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        preb_labels.append(no_repeat_blank_label)
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    return preb_labels
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def LPRNinitialize_model(model_path=None):
 | 
				
			||||||
 | 
					    """初始化LPRNet模型"""
 | 
				
			||||||
 | 
					    global lprnet_model, device
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        # 设置设备
 | 
				
			||||||
 | 
					        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 | 
				
			||||||
 | 
					        print(f"使用设备: {device}")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 构建模型
 | 
				
			||||||
 | 
					        lprnet_model = build_lprnet(
 | 
				
			||||||
 | 
					            lpr_max_len=8, 
 | 
				
			||||||
 | 
					            phase=False, 
 | 
				
			||||||
 | 
					            class_num=len(CHARS), 
 | 
				
			||||||
 | 
					            dropout_rate=0.5
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 加载预训练权重
 | 
				
			||||||
 | 
					        if model_path is None:
 | 
				
			||||||
 | 
					            model_path = os.path.join(os.path.dirname(__file__), "Final_LPRNet_model.pth")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        if os.path.exists(model_path):
 | 
				
			||||||
 | 
					            checkpoint = torch.load(model_path, map_location=device)
 | 
				
			||||||
 | 
					            lprnet_model.load_state_dict(checkpoint)
 | 
				
			||||||
 | 
					            print(f"成功加载预训练模型: {model_path}")
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            print(f"警告: 未找到预训练模型文件 {model_path},使用随机初始化权重")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        lprnet_model.to(device)
 | 
				
			||||||
 | 
					        lprnet_model.eval()
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        print("LPRNet模型初始化完成")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 统计模型参数
 | 
				
			||||||
 | 
					        total_params = sum(p.numel() for p in lprnet_model.parameters())
 | 
				
			||||||
 | 
					        print(f"LPRNet模型参数数量: {total_params:,}")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        return True
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					    except Exception as e:
 | 
				
			||||||
 | 
					        print(f"LPRNet模型初始化失败: {e}")
 | 
				
			||||||
 | 
					        import traceback
 | 
				
			||||||
 | 
					        traceback.print_exc()
 | 
				
			||||||
 | 
					        return False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def LPRNmodel_predict(image_array):
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    LPRNet车牌号识别接口函数
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    参数:
 | 
				
			||||||
 | 
					        image_array: numpy数组格式的车牌图像,已经过矫正处理
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    返回:
 | 
				
			||||||
 | 
					        list: 包含7个字符的列表,代表车牌号的每个字符
 | 
				
			||||||
 | 
					              例如: ['京', 'A', '1', '2', '3', '4', '5']
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    global lprnet_model, device
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    if lprnet_model is None:
 | 
				
			||||||
 | 
					        print("LPRNet模型未初始化,请先调用LPRNinitialize_model()")
 | 
				
			||||||
 | 
					        return ['待', '识', '别', '0', '0', '0', '0']
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        # 预处理图像
 | 
				
			||||||
 | 
					        processed_image = preprocess_image(image_array)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 转换为tensor
 | 
				
			||||||
 | 
					        input_tensor = torch.from_numpy(processed_image).float()
 | 
				
			||||||
 | 
					        input_tensor = input_tensor.to(device)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 模型推理
 | 
				
			||||||
 | 
					        with torch.no_grad():
 | 
				
			||||||
 | 
					            prebs = lprnet_model(input_tensor)
 | 
				
			||||||
 | 
					            prebs = prebs.cpu().detach().numpy()
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 贪婪解码
 | 
				
			||||||
 | 
					        preb_labels = greedy_decode(prebs)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        if len(preb_labels) > 0 and len(preb_labels[0]) > 0:
 | 
				
			||||||
 | 
					            # 将索引转换为字符
 | 
				
			||||||
 | 
					            predicted_chars = [CHARS[idx] for idx in preb_labels[0] if idx < len(CHARS)]
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            print(f"LPRNet识别结果: {''.join(predicted_chars)}")
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # 确保返回7个字符(车牌标准长度)
 | 
				
			||||||
 | 
					            if len(predicted_chars) < 7:
 | 
				
			||||||
 | 
					                # 如果识别结果少于7个字符,用'0'补齐
 | 
				
			||||||
 | 
					                predicted_chars.extend(['0'] * (7 - len(predicted_chars)))
 | 
				
			||||||
 | 
					            elif len(predicted_chars) > 7:
 | 
				
			||||||
 | 
					                # 如果识别结果多于7个字符,截取前7个
 | 
				
			||||||
 | 
					                predicted_chars = predicted_chars[:7]
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            return predicted_chars
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            print("LPRNet识别结果为空")
 | 
				
			||||||
 | 
					            return ['识', '别', '为', '空', '0', '0', '0']
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					    except Exception as e:
 | 
				
			||||||
 | 
					        print(f"LPRNet识别失败: {e}")
 | 
				
			||||||
 | 
					        import traceback
 | 
				
			||||||
 | 
					        traceback.print_exc()
 | 
				
			||||||
 | 
					        return ['识', '别', '失', '败', '0', '0', '0']
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# 为了保持与其他模块的一致性,提供一个处理器类
 | 
				
			||||||
 | 
					class LPRProcessor:
 | 
				
			||||||
 | 
					    def __init__(self):
 | 
				
			||||||
 | 
					        self.initialized = False
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def initialize(self, model_path=None):
 | 
				
			||||||
 | 
					        """初始化模型"""
 | 
				
			||||||
 | 
					        self.initialized = LPRNinitialize_model(model_path)
 | 
				
			||||||
 | 
					        return self.initialized
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def predict(self, image_array):
 | 
				
			||||||
 | 
					        """预测接口"""
 | 
				
			||||||
 | 
					        if not self.initialized:
 | 
				
			||||||
 | 
					            print("模型未初始化")
 | 
				
			||||||
 | 
					            return ['未', '初', '始', '化', '0', '0', '0']
 | 
				
			||||||
 | 
					        return LPRNmodel_predict(image_array)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# 创建全局处理器实例
 | 
				
			||||||
 | 
					_processor = LPRProcessor()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_lpr_processor():
 | 
				
			||||||
 | 
					    """获取LPR处理器实例"""
 | 
				
			||||||
 | 
					    return _processor
 | 
				
			||||||
							
								
								
									
										14
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										14
									
								
								README.md
									
									
									
									
									
								
							@@ -14,8 +14,12 @@ License_plate_recognition/
 | 
				
			|||||||
│   └── yolo11s-pose42.pt     # YOLO pose模型文件
 | 
					│   └── yolo11s-pose42.pt     # YOLO pose模型文件
 | 
				
			||||||
├── OCR_part/                 # OCR识别模块
 | 
					├── OCR_part/                 # OCR识别模块
 | 
				
			||||||
│   └── ocr_interface.py      # OCR接口(占位)
 | 
					│   └── ocr_interface.py      # OCR接口(占位)
 | 
				
			||||||
└── CRNN_part/                # CRNN识别模块
 | 
					├── CRNN_part/                # CRNN识别模块
 | 
				
			||||||
    └── crnn_interface.py     # CRNN
 | 
					│   └── crnn_interface.py     # CRNN接口
 | 
				
			||||||
 | 
					└── LPRNET_part/              # LPRNet识别模块
 | 
				
			||||||
 | 
					    ├── lpr_interface.py      # LPRNet接口
 | 
				
			||||||
 | 
					    ├── Final_LPRNet_model.pth # 预训练模型文件
 | 
				
			||||||
 | 
					    └── will_delete/          # 参考资料(可删除)
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## 功能特性
 | 
					## 功能特性
 | 
				
			||||||
@@ -44,8 +48,10 @@ License_plate_recognition/
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
### 5. 模块化设计
 | 
					### 5. 模块化设计
 | 
				
			||||||
- yolopart:负责车牌定位和矫正
 | 
					- yolopart:负责车牌定位和矫正
 | 
				
			||||||
- OCR_part/CRNN_part:负责车牌号识别(接口已预留)
 | 
					- OCR_part:基于PaddleOCR的车牌号识别模块
 | 
				
			||||||
- 各模块独立,便于维护和扩展
 | 
					- CRNN_part:基于CRNN网络的车牌号识别模块
 | 
				
			||||||
 | 
					- LPRNET_part:基于LPRNet网络的车牌号识别模块
 | 
				
			||||||
 | 
					- 各模块独立,便于维护和扩展,可通过修改main.py中的导入语句切换识别模块
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## 安装和使用
 | 
					## 安装和使用
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
							
								
								
									
										16
									
								
								main.py
									
									
									
									
									
								
							
							
						
						
									
										16
									
								
								main.py
									
									
									
									
									
								
							@@ -9,11 +9,17 @@ from PyQt5.QtCore import QTimer, Qt, pyqtSignal, QThread
 | 
				
			|||||||
from PyQt5.QtGui import QImage, QPixmap, QFont, QPainter, QPen, QColor
 | 
					from PyQt5.QtGui import QImage, QPixmap, QFont, QPainter, QPen, QColor
 | 
				
			||||||
import os
 | 
					import os
 | 
				
			||||||
from yolopart.detector import LicensePlateYOLO
 | 
					from yolopart.detector import LicensePlateYOLO
 | 
				
			||||||
from OCR_part.ocr_interface import LPRNmodel_predict
 | 
					
 | 
				
			||||||
from OCR_part.ocr_interface import LPRNinitialize_model
 | 
					#选择使用哪个模块
 | 
				
			||||||
# 使用CRNN进行车牌字符识别(可选)同时也要修改第395,396行
 | 
					from LPRNET_part.lpr_interface import LPRNmodel_predict
 | 
				
			||||||
# from CRNN_part.crnn_interface import LPRNmodel_predict
 | 
					from LPRNET_part.lpr_interface import LPRNinitialize_model
 | 
				
			||||||
# from CRNN_part.crnn_interface import LPRNinitialize_model
 | 
					
 | 
				
			||||||
 | 
					#使用OCR
 | 
				
			||||||
 | 
					#from OCR_part.ocr_interface import LPRNmodel_predict
 | 
				
			||||||
 | 
					#from OCR_part.ocr_interface import LPRNinitialize_model
 | 
				
			||||||
 | 
					# 使用CRNN
 | 
				
			||||||
 | 
					#from CRNN_part.crnn_interface import LPRNmodel_predict
 | 
				
			||||||
 | 
					#from CRNN_part.crnn_interface import LPRNinitialize_model
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class CameraThread(QThread):
 | 
					class CameraThread(QThread):
 | 
				
			||||||
    """摄像头线程类"""
 | 
					    """摄像头线程类"""
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user