LPR
This commit is contained in:
parent
739cd1d914
commit
95aa6b6bba
284
LPRNET_part/lpr_interface.py
Normal file
284
LPRNET_part/lpr_interface.py
Normal file
@ -0,0 +1,284 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
from torch.autograd import Variable
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
# 字符集定义
|
||||||
|
CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
|
||||||
|
'苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
|
||||||
|
'桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁',
|
||||||
|
'新',
|
||||||
|
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
|
||||||
|
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',
|
||||||
|
'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
|
||||||
|
'W', 'X', 'Y', 'Z', 'I', 'O', '-'
|
||||||
|
]
|
||||||
|
|
||||||
|
CHARS_DICT = {char: i for i, char in enumerate(CHARS)}
|
||||||
|
|
||||||
|
# 全局变量
|
||||||
|
lprnet_model = None
|
||||||
|
device = None
|
||||||
|
|
||||||
|
class small_basic_block(nn.Module):
|
||||||
|
def __init__(self, ch_in, ch_out):
|
||||||
|
super(small_basic_block, self).__init__()
|
||||||
|
self.block = nn.Sequential(
|
||||||
|
nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.block(x)
|
||||||
|
|
||||||
|
class LPRNet(nn.Module):
|
||||||
|
def __init__(self, lpr_max_len, phase, class_num, dropout_rate):
|
||||||
|
super(LPRNet, self).__init__()
|
||||||
|
self.phase = phase
|
||||||
|
self.lpr_max_len = lpr_max_len
|
||||||
|
self.class_num = class_num
|
||||||
|
self.backbone = nn.Sequential(
|
||||||
|
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0
|
||||||
|
nn.BatchNorm2d(num_features=64),
|
||||||
|
nn.ReLU(), # 2
|
||||||
|
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),
|
||||||
|
small_basic_block(ch_in=64, ch_out=128), # *** 4 ***
|
||||||
|
nn.BatchNorm2d(num_features=128),
|
||||||
|
nn.ReLU(), # 6
|
||||||
|
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),
|
||||||
|
small_basic_block(ch_in=64, ch_out=256), # 8
|
||||||
|
nn.BatchNorm2d(num_features=256),
|
||||||
|
nn.ReLU(), # 10
|
||||||
|
small_basic_block(ch_in=256, ch_out=256), # *** 11 ***
|
||||||
|
nn.BatchNorm2d(num_features=256), # 12
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)), # 14
|
||||||
|
nn.Dropout(dropout_rate),
|
||||||
|
nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1), # 16
|
||||||
|
nn.BatchNorm2d(num_features=256),
|
||||||
|
nn.ReLU(), # 18
|
||||||
|
nn.Dropout(dropout_rate),
|
||||||
|
nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # 20
|
||||||
|
nn.BatchNorm2d(num_features=class_num),
|
||||||
|
nn.ReLU(), # *** 22 ***
|
||||||
|
)
|
||||||
|
self.container = nn.Sequential(
|
||||||
|
nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1, 1), stride=(1, 1)),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
keep_features = list()
|
||||||
|
for i, layer in enumerate(self.backbone.children()):
|
||||||
|
x = layer(x)
|
||||||
|
if i in [2, 6, 13, 22]: # [2, 4, 8, 11, 22]
|
||||||
|
keep_features.append(x)
|
||||||
|
|
||||||
|
global_context = list()
|
||||||
|
for i, f in enumerate(keep_features):
|
||||||
|
if i in [0, 1]:
|
||||||
|
f = nn.AvgPool2d(kernel_size=5, stride=5)(f)
|
||||||
|
if i in [2]:
|
||||||
|
f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)
|
||||||
|
f_pow = torch.pow(f, 2)
|
||||||
|
f_mean = torch.mean(f_pow)
|
||||||
|
f = torch.div(f, f_mean)
|
||||||
|
global_context.append(f)
|
||||||
|
|
||||||
|
x = torch.cat(global_context, 1)
|
||||||
|
x = self.container(x)
|
||||||
|
logits = torch.mean(x, dim=2)
|
||||||
|
|
||||||
|
return logits
|
||||||
|
|
||||||
|
def build_lprnet(lpr_max_len=8, phase=False, class_num=66, dropout_rate=0.5):
|
||||||
|
"""构建LPRNet模型"""
|
||||||
|
Net = LPRNet(lpr_max_len, phase, class_num, dropout_rate)
|
||||||
|
|
||||||
|
if phase == "train":
|
||||||
|
return Net.train()
|
||||||
|
else:
|
||||||
|
return Net.eval()
|
||||||
|
|
||||||
|
def preprocess_image(image_array, img_size=(94, 24)):
|
||||||
|
"""图像预处理"""
|
||||||
|
# 确保输入是numpy数组
|
||||||
|
if not isinstance(image_array, np.ndarray):
|
||||||
|
raise ValueError("输入必须是numpy数组")
|
||||||
|
|
||||||
|
# 调整图像尺寸
|
||||||
|
height, width = image_array.shape[:2]
|
||||||
|
if height != img_size[1] or width != img_size[0]:
|
||||||
|
image_array = cv2.resize(image_array, img_size)
|
||||||
|
|
||||||
|
# 归一化到[0,1]
|
||||||
|
image_array = image_array.astype(np.float32) / 255.0
|
||||||
|
|
||||||
|
# 转换为CHW格式
|
||||||
|
if len(image_array.shape) == 3:
|
||||||
|
image_array = np.transpose(image_array, (2, 0, 1))
|
||||||
|
|
||||||
|
# 添加batch维度
|
||||||
|
image_array = np.expand_dims(image_array, axis=0)
|
||||||
|
|
||||||
|
return image_array
|
||||||
|
|
||||||
|
def greedy_decode(prebs):
|
||||||
|
"""贪婪解码"""
|
||||||
|
preb_labels = list()
|
||||||
|
for i in range(prebs.shape[0]):
|
||||||
|
preb = prebs[i, :, :]
|
||||||
|
preb_label = list()
|
||||||
|
for j in range(preb.shape[1]):
|
||||||
|
preb_label.append(np.argmax(preb[:, j], axis=0))
|
||||||
|
|
||||||
|
no_repeat_blank_label = list()
|
||||||
|
pre_c = preb_label[0]
|
||||||
|
if pre_c != len(CHARS) - 1:
|
||||||
|
no_repeat_blank_label.append(pre_c)
|
||||||
|
|
||||||
|
for c in preb_label: # 去除重复标签和空白标签
|
||||||
|
if (pre_c == c) or (c == len(CHARS) - 1):
|
||||||
|
if c == len(CHARS) - 1:
|
||||||
|
pre_c = c
|
||||||
|
continue
|
||||||
|
no_repeat_blank_label.append(c)
|
||||||
|
pre_c = c
|
||||||
|
|
||||||
|
preb_labels.append(no_repeat_blank_label)
|
||||||
|
|
||||||
|
return preb_labels
|
||||||
|
|
||||||
|
def LPRNinitialize_model(model_path=None):
|
||||||
|
"""初始化LPRNet模型"""
|
||||||
|
global lprnet_model, device
|
||||||
|
|
||||||
|
try:
|
||||||
|
# 设置设备
|
||||||
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||||
|
print(f"使用设备: {device}")
|
||||||
|
|
||||||
|
# 构建模型
|
||||||
|
lprnet_model = build_lprnet(
|
||||||
|
lpr_max_len=8,
|
||||||
|
phase=False,
|
||||||
|
class_num=len(CHARS),
|
||||||
|
dropout_rate=0.5
|
||||||
|
)
|
||||||
|
|
||||||
|
# 加载预训练权重
|
||||||
|
if model_path is None:
|
||||||
|
model_path = os.path.join(os.path.dirname(__file__), "Final_LPRNet_model.pth")
|
||||||
|
|
||||||
|
if os.path.exists(model_path):
|
||||||
|
checkpoint = torch.load(model_path, map_location=device)
|
||||||
|
lprnet_model.load_state_dict(checkpoint)
|
||||||
|
print(f"成功加载预训练模型: {model_path}")
|
||||||
|
else:
|
||||||
|
print(f"警告: 未找到预训练模型文件 {model_path},使用随机初始化权重")
|
||||||
|
|
||||||
|
lprnet_model.to(device)
|
||||||
|
lprnet_model.eval()
|
||||||
|
|
||||||
|
print("LPRNet模型初始化完成")
|
||||||
|
|
||||||
|
# 统计模型参数
|
||||||
|
total_params = sum(p.numel() for p in lprnet_model.parameters())
|
||||||
|
print(f"LPRNet模型参数数量: {total_params:,}")
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"LPRNet模型初始化失败: {e}")
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
|
return False
|
||||||
|
|
||||||
|
def LPRNmodel_predict(image_array):
|
||||||
|
"""
|
||||||
|
LPRNet车牌号识别接口函数
|
||||||
|
|
||||||
|
参数:
|
||||||
|
image_array: numpy数组格式的车牌图像,已经过矫正处理
|
||||||
|
|
||||||
|
返回:
|
||||||
|
list: 包含7个字符的列表,代表车牌号的每个字符
|
||||||
|
例如: ['京', 'A', '1', '2', '3', '4', '5']
|
||||||
|
"""
|
||||||
|
global lprnet_model, device
|
||||||
|
|
||||||
|
if lprnet_model is None:
|
||||||
|
print("LPRNet模型未初始化,请先调用LPRNinitialize_model()")
|
||||||
|
return ['待', '识', '别', '0', '0', '0', '0']
|
||||||
|
|
||||||
|
try:
|
||||||
|
# 预处理图像
|
||||||
|
processed_image = preprocess_image(image_array)
|
||||||
|
|
||||||
|
# 转换为tensor
|
||||||
|
input_tensor = torch.from_numpy(processed_image).float()
|
||||||
|
input_tensor = input_tensor.to(device)
|
||||||
|
|
||||||
|
# 模型推理
|
||||||
|
with torch.no_grad():
|
||||||
|
prebs = lprnet_model(input_tensor)
|
||||||
|
prebs = prebs.cpu().detach().numpy()
|
||||||
|
|
||||||
|
# 贪婪解码
|
||||||
|
preb_labels = greedy_decode(prebs)
|
||||||
|
|
||||||
|
if len(preb_labels) > 0 and len(preb_labels[0]) > 0:
|
||||||
|
# 将索引转换为字符
|
||||||
|
predicted_chars = [CHARS[idx] for idx in preb_labels[0] if idx < len(CHARS)]
|
||||||
|
|
||||||
|
print(f"LPRNet识别结果: {''.join(predicted_chars)}")
|
||||||
|
|
||||||
|
# 确保返回7个字符(车牌标准长度)
|
||||||
|
if len(predicted_chars) < 7:
|
||||||
|
# 如果识别结果少于7个字符,用'0'补齐
|
||||||
|
predicted_chars.extend(['0'] * (7 - len(predicted_chars)))
|
||||||
|
elif len(predicted_chars) > 7:
|
||||||
|
# 如果识别结果多于7个字符,截取前7个
|
||||||
|
predicted_chars = predicted_chars[:7]
|
||||||
|
|
||||||
|
return predicted_chars
|
||||||
|
else:
|
||||||
|
print("LPRNet识别结果为空")
|
||||||
|
return ['识', '别', '为', '空', '0', '0', '0']
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"LPRNet识别失败: {e}")
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
|
return ['识', '别', '失', '败', '0', '0', '0']
|
||||||
|
|
||||||
|
# 为了保持与其他模块的一致性,提供一个处理器类
|
||||||
|
class LPRProcessor:
|
||||||
|
def __init__(self):
|
||||||
|
self.initialized = False
|
||||||
|
|
||||||
|
def initialize(self, model_path=None):
|
||||||
|
"""初始化模型"""
|
||||||
|
self.initialized = LPRNinitialize_model(model_path)
|
||||||
|
return self.initialized
|
||||||
|
|
||||||
|
def predict(self, image_array):
|
||||||
|
"""预测接口"""
|
||||||
|
if not self.initialized:
|
||||||
|
print("模型未初始化")
|
||||||
|
return ['未', '初', '始', '化', '0', '0', '0']
|
||||||
|
return LPRNmodel_predict(image_array)
|
||||||
|
|
||||||
|
# 创建全局处理器实例
|
||||||
|
_processor = LPRProcessor()
|
||||||
|
|
||||||
|
def get_lpr_processor():
|
||||||
|
"""获取LPR处理器实例"""
|
||||||
|
return _processor
|
14
README.md
14
README.md
@ -14,8 +14,12 @@ License_plate_recognition/
|
|||||||
│ └── yolo11s-pose42.pt # YOLO pose模型文件
|
│ └── yolo11s-pose42.pt # YOLO pose模型文件
|
||||||
├── OCR_part/ # OCR识别模块
|
├── OCR_part/ # OCR识别模块
|
||||||
│ └── ocr_interface.py # OCR接口(占位)
|
│ └── ocr_interface.py # OCR接口(占位)
|
||||||
└── CRNN_part/ # CRNN识别模块
|
├── CRNN_part/ # CRNN识别模块
|
||||||
└── crnn_interface.py # CRNN
|
│ └── crnn_interface.py # CRNN接口
|
||||||
|
└── LPRNET_part/ # LPRNet识别模块
|
||||||
|
├── lpr_interface.py # LPRNet接口
|
||||||
|
├── Final_LPRNet_model.pth # 预训练模型文件
|
||||||
|
└── will_delete/ # 参考资料(可删除)
|
||||||
```
|
```
|
||||||
|
|
||||||
## 功能特性
|
## 功能特性
|
||||||
@ -44,8 +48,10 @@ License_plate_recognition/
|
|||||||
|
|
||||||
### 5. 模块化设计
|
### 5. 模块化设计
|
||||||
- yolopart:负责车牌定位和矫正
|
- yolopart:负责车牌定位和矫正
|
||||||
- OCR_part/CRNN_part:负责车牌号识别(接口已预留)
|
- OCR_part:基于PaddleOCR的车牌号识别模块
|
||||||
- 各模块独立,便于维护和扩展
|
- CRNN_part:基于CRNN网络的车牌号识别模块
|
||||||
|
- LPRNET_part:基于LPRNet网络的车牌号识别模块
|
||||||
|
- 各模块独立,便于维护和扩展,可通过修改main.py中的导入语句切换识别模块
|
||||||
|
|
||||||
## 安装和使用
|
## 安装和使用
|
||||||
|
|
||||||
|
12
main.py
12
main.py
@ -9,9 +9,15 @@ from PyQt5.QtCore import QTimer, Qt, pyqtSignal, QThread
|
|||||||
from PyQt5.QtGui import QImage, QPixmap, QFont, QPainter, QPen, QColor
|
from PyQt5.QtGui import QImage, QPixmap, QFont, QPainter, QPen, QColor
|
||||||
import os
|
import os
|
||||||
from yolopart.detector import LicensePlateYOLO
|
from yolopart.detector import LicensePlateYOLO
|
||||||
from OCR_part.ocr_interface import LPRNmodel_predict
|
|
||||||
from OCR_part.ocr_interface import LPRNinitialize_model
|
#选择使用哪个模块
|
||||||
# 使用CRNN进行车牌字符识别(可选)同时也要修改第395,396行
|
from LPRNET_part.lpr_interface import LPRNmodel_predict
|
||||||
|
from LPRNET_part.lpr_interface import LPRNinitialize_model
|
||||||
|
|
||||||
|
#使用OCR
|
||||||
|
#from OCR_part.ocr_interface import LPRNmodel_predict
|
||||||
|
#from OCR_part.ocr_interface import LPRNinitialize_model
|
||||||
|
# 使用CRNN
|
||||||
#from CRNN_part.crnn_interface import LPRNmodel_predict
|
#from CRNN_part.crnn_interface import LPRNmodel_predict
|
||||||
#from CRNN_part.crnn_interface import LPRNinitialize_model
|
#from CRNN_part.crnn_interface import LPRNinitialize_model
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user