更新接口
Before Width: | Height: | Size: 3.8 KiB After Width: | Height: | Size: 3.8 KiB |
Before Width: | Height: | Size: 3.0 KiB After Width: | Height: | Size: 3.0 KiB |
BIN
LPRNET_part/ets/6ce2ec7dbed6cf3c8403abe2683c57e5.jpg
Normal file
After Width: | Height: | Size: 4.0 KiB |
BIN
LPRNET_part/ets/c11304d10bcd47911e458398d1ea445d.jpg
Normal file
After Width: | Height: | Size: 7.3 KiB |
BIN
LPRNET_part/ets/c6ab0fbcfb2b6fbe15c5b3eb9806a28b.jpg
Normal file
After Width: | Height: | Size: 64 KiB |
@ -1,3 +1,4 @@
|
||||
# 导入必要的库
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import cv2
|
||||
@ -11,6 +12,7 @@ from PIL import Image
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
|
||||
# LPRNet字符集定义(与训练时保持一致)
|
||||
# 包含中国省份简称、数字、字母和特殊字符
|
||||
CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
|
||||
'苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
|
||||
'桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新',
|
||||
@ -19,84 +21,115 @@ CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
|
||||
'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
|
||||
'W', 'X', 'Y', 'Z', 'I', 'O', '-']
|
||||
|
||||
# 创建字符到索引的映射字典
|
||||
CHARS_DICT = {char: i for i, char in enumerate(CHARS)}
|
||||
|
||||
# 简化的LPRNet模型定义
|
||||
# 简化的LPRNet模型定义 - 基础卷积块
|
||||
class small_basic_block(nn.Module):
|
||||
def __init__(self, ch_in, ch_out):
|
||||
super(small_basic_block, self).__init__()
|
||||
# 定义一个小的基本卷积块,包含四个卷积层
|
||||
self.block = nn.Sequential(
|
||||
# 1x1卷积,降低通道数
|
||||
nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),
|
||||
nn.ReLU(),
|
||||
# 3x1卷积,处理水平特征
|
||||
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),
|
||||
nn.ReLU(),
|
||||
# 1x3卷积,处理垂直特征
|
||||
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),
|
||||
nn.ReLU(),
|
||||
# 1x1卷积,恢复通道数
|
||||
nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.block(x)
|
||||
|
||||
# LPRNet模型定义 - 车牌识别网络
|
||||
class LPRNet(nn.Module):
|
||||
def __init__(self, lpr_max_len, phase, class_num, dropout_rate):
|
||||
super(LPRNet, self).__init__()
|
||||
self.phase = phase
|
||||
self.lpr_max_len = lpr_max_len
|
||||
self.class_num = class_num
|
||||
|
||||
# 定义主干网络
|
||||
self.backbone = nn.Sequential(
|
||||
# 初始卷积层
|
||||
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0
|
||||
nn.BatchNorm2d(num_features=64),
|
||||
nn.ReLU(), # 2
|
||||
# 最大池化层
|
||||
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),
|
||||
# 第一个基本块
|
||||
small_basic_block(ch_in=64, ch_out=128), # *** 4 ***
|
||||
nn.BatchNorm2d(num_features=128),
|
||||
nn.ReLU(), # 6
|
||||
# 第二个池化层
|
||||
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),
|
||||
# 第二个基本块
|
||||
small_basic_block(ch_in=64, ch_out=256), # 8
|
||||
nn.BatchNorm2d(num_features=256),
|
||||
nn.ReLU(), # 10
|
||||
# 第三个基本块
|
||||
small_basic_block(ch_in=256, ch_out=256), # *** 11 ***
|
||||
nn.BatchNorm2d(num_features=256),
|
||||
nn.ReLU(), # 13
|
||||
# 第三个池化层
|
||||
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)), # 14
|
||||
# Dropout层,防止过拟合
|
||||
nn.Dropout(dropout_rate),
|
||||
# 特征提取卷积层
|
||||
nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1), # 16
|
||||
nn.BatchNorm2d(num_features=256),
|
||||
nn.ReLU(), # 18
|
||||
# 第二个Dropout层
|
||||
nn.Dropout(dropout_rate),
|
||||
# 分类卷积层
|
||||
nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # 20
|
||||
nn.BatchNorm2d(num_features=class_num),
|
||||
nn.ReLU(), # 22
|
||||
)
|
||||
|
||||
# 定义容器层,用于融合全局上下文信息
|
||||
self.container = nn.Sequential(
|
||||
nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1,1), stride=(1,1)),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# 保存中间特征
|
||||
keep_features = list()
|
||||
for i, layer in enumerate(self.backbone.children()):
|
||||
x = layer(x)
|
||||
# 保存特定层的输出特征
|
||||
if i in [2, 6, 13, 22]: # [2, 4, 8, 11, 22]
|
||||
keep_features.append(x)
|
||||
|
||||
# 处理全局上下文信息
|
||||
global_context = list()
|
||||
for i, f in enumerate(keep_features):
|
||||
# 对不同层的特征进行不同尺度的平均池化
|
||||
if i in [0, 1]:
|
||||
f = nn.AvgPool2d(kernel_size=5, stride=5)(f)
|
||||
if i in [2]:
|
||||
f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)
|
||||
# 对特征进行归一化处理
|
||||
f_pow = torch.pow(f, 2)
|
||||
f_mean = torch.mean(f_pow)
|
||||
f = torch.div(f, f_mean)
|
||||
global_context.append(f)
|
||||
|
||||
# 拼接全局上下文特征
|
||||
x = torch.cat(global_context, 1)
|
||||
# 通过容器层处理
|
||||
x = self.container(x)
|
||||
# 对序列维度进行平均,得到最终输出
|
||||
logits = torch.mean(x, dim=2)
|
||||
|
||||
return logits
|
||||
|
||||
# LPRNet推理类
|
||||
class LPRNetInference:
|
||||
def __init__(self, model_path=None, img_size=[94, 24], lpr_max_len=8, dropout_rate=0.5):
|
||||
"""
|
||||
@ -109,6 +142,7 @@ class LPRNetInference:
|
||||
"""
|
||||
self.img_size = img_size
|
||||
self.lpr_max_len = lpr_max_len
|
||||
# 检测是否有可用的CUDA设备
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
# 设置默认模型路径
|
||||
@ -130,6 +164,7 @@ class LPRNetInference:
|
||||
else:
|
||||
print(f"Warning: 模型文件不存在或未指定: {model_path}. 使用随机权重.")
|
||||
|
||||
# 将模型移动到指定设备并设置为评估模式
|
||||
self.model.to(self.device)
|
||||
self.model.eval()
|
||||
|
||||
@ -164,9 +199,11 @@ class LPRNetInference:
|
||||
image_array = cv2.resize(image_array, tuple(self.img_size))
|
||||
|
||||
# 使用与训练时相同的预处理方式
|
||||
# 归一化处理:减去127.5并乘以0.0078125,将像素值从[0,255]映射到[-1,1]
|
||||
image_array = image_array.astype('float32')
|
||||
image_array -= 127.5
|
||||
image_array *= 0.0078125
|
||||
# 调整维度顺序从HWC到CHW
|
||||
image_array = np.transpose(image_array, (2, 0, 1)) # HWC -> CHW
|
||||
|
||||
# 转换为tensor并添加batch维度
|
||||
@ -248,7 +285,7 @@ class LPRNetInference:
|
||||
print(f"预测图像失败: {e}")
|
||||
return None, 0.0
|
||||
|
||||
# 全局变量
|
||||
# 全局变量,用于存储模型实例
|
||||
lpr_model = None
|
||||
|
||||
def LPRNinitialize_model():
|
||||
@ -295,6 +332,9 @@ def LPRNmodel_predict(image_array):
|
||||
return ['待', '识', '别', '0', '0', '0', '0', '0']
|
||||
|
||||
try:
|
||||
# 使用OpenCV调整图像大小到模型要求的尺寸
|
||||
image_array = cv2.resize(image_array, (128, 48))
|
||||
print(f"666999图片尺寸: {image_array.shape}")
|
||||
# 预测车牌号
|
||||
predicted_text, confidence = lpr_model.predict(image_array)
|
||||
|
||||
|
1
main.py
@ -11,7 +11,6 @@ from yolopart.detector import LicensePlateYOLO
|
||||
#选择使用哪个模块
|
||||
# from LPRNET_part.lpr_interface import LPRNmodel_predict
|
||||
# from LPRNET_part.lpr_interface import LPRNinitialize_model
|
||||
|
||||
#使用OCR
|
||||
# from OCR_part.ocr_interface import LPRNmodel_predict
|
||||
# from OCR_part.ocr_interface import LPRNinitialize_model
|
||||
|
@ -85,6 +85,7 @@ def test_image_loading():
|
||||
# 方法2: 支持中文路径的方式
|
||||
try:
|
||||
img2 = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
|
||||
# img2 = cv2.resize(img2,(128,48))
|
||||
print(f"cv2.imdecode结果: {img2 is not None}")
|
||||
if img2 is not None:
|
||||
print(f"图片尺寸: {img2.shape}")
|
||||
|