Compare commits

...

6 Commits

Author SHA1 Message Date
670b86d200 修改一下模型相关 2025-09-24 12:42:13 +08:00
41e14ec828 重构了红外接收 2025-09-23 23:58:49 +08:00
9f663aed0b revert b3c6b4cde9
revert 修复红外的兼容性问题
2025-09-23 14:09:49 +08:00
21d21f8247 revert e1a749a8cd
revert Merge branch 'main' of ssh://gitea.spdis.top/spdis/Dorm-Air-Conditioner-Smart-Controller
2025-09-23 14:09:36 +08:00
e1a749a8cd Merge branch 'main' of ssh://gitea.spdis.top/spdis/Dorm-Air-Conditioner-Smart-Controller 2025-09-22 18:49:31 +08:00
b3c6b4cde9 修复红外的兼容性问题 2025-09-22 18:49:14 +08:00
5 changed files with 502 additions and 289 deletions

View File

@@ -190,8 +190,11 @@ void sendStoredIRSignal(String buttonName) {
// 从字符串解析红外信号 // 从字符串解析红外信号
IRSignal parseIRSignalFromString(String dataStr) { IRSignal parseIRSignalFromString(String dataStr) {
IRSignal signal; IRSignal signal;
signal.data = nullptr; signal.markTimes = nullptr;
signal.length = 0; signal.spaceTimes = nullptr;
signal.markCount = 0;
signal.spaceCount = 0;
signal.carrierFreq = IR_CARRIER_FREQ;
signal.isValid = false; signal.isValid = false;
if (dataStr.length() == 0) { if (dataStr.length() == 0) {
@@ -203,11 +206,11 @@ IRSignal parseIRSignalFromString(String dataStr) {
for (int i = 0; i < dataStr.length(); i++) { for (int i = 0; i < dataStr.length(); i++) {
if (dataStr[i] == ',') commaCount++; if (dataStr[i] == ',') commaCount++;
} }
signal.length = commaCount + 1; int totalLength = commaCount + 1;
// 分配内存 // 分配临时内存存储原始数据
signal.data = (unsigned int*)malloc(signal.length * sizeof(unsigned int)); unsigned int* tempData = (unsigned int*)malloc(totalLength * sizeof(unsigned int));
if (signal.data == nullptr) { if (tempData == nullptr) {
return signal; return signal;
} }
@@ -217,27 +220,78 @@ IRSignal parseIRSignalFromString(String dataStr) {
for (int i = 0; i <= dataStr.length(); i++) { for (int i = 0; i <= dataStr.length(); i++) {
if (i == dataStr.length() || dataStr[i] == ',') { if (i == dataStr.length() || dataStr[i] == ',') {
String valueStr = dataStr.substring(startPos, i); String valueStr = dataStr.substring(startPos, i);
signal.data[index] = valueStr.toInt(); tempData[index] = valueStr.toInt();
index++; index++;
startPos = i + 1; startPos = i + 1;
} }
} }
// 分离mark和space数据
signal.markCount = (totalLength + 1) / 2;
signal.spaceCount = totalLength / 2;
// 分配mark时间数组
if (signal.markCount > 0) {
signal.markTimes = (unsigned int*)malloc(signal.markCount * sizeof(unsigned int));
if (signal.markTimes == nullptr) {
free(tempData);
return signal;
}
for (int i = 0; i < signal.markCount; i++) {
signal.markTimes[i] = tempData[i * 2];
}
}
// 分配space时间数组
if (signal.spaceCount > 0) {
signal.spaceTimes = (unsigned int*)malloc(signal.spaceCount * sizeof(unsigned int));
if (signal.spaceTimes == nullptr) {
if (signal.markTimes != nullptr) {
free(signal.markTimes);
signal.markTimes = nullptr;
signal.markCount = 0;
}
free(tempData);
return signal;
}
for (int i = 0; i < signal.spaceCount; i++) {
signal.spaceTimes[i] = tempData[i * 2 + 1];
}
}
free(tempData);
signal.isValid = true; signal.isValid = true;
return signal; return signal;
} }
// 将红外信号转换为字符串 // 将红外信号转换为字符串
String irSignalToString(const IRSignal& signal) { String irSignalToString(const IRSignal& signal) {
if (!signal.isValid || signal.data == nullptr || signal.length == 0) { if (!signal.isValid ||
(signal.markTimes == nullptr && signal.spaceTimes == nullptr) ||
(signal.markCount == 0 && signal.spaceCount == 0)) {
return ""; return "";
} }
String result = ""; String result = "";
for (int i = 0; i < signal.length; i++) { int maxCount = max(signal.markCount, signal.spaceCount);
if (i > 0) result += ",";
result += String(signal.data[i]); // 重建原始时序数据交替输出mark和space
for (int i = 0; i < maxCount; i++) {
// 添加mark时间
if (i < signal.markCount) {
if (result.length() > 0) result += ",";
result += String(signal.markTimes[i]);
}
// 添加space时间
if (i < signal.spaceCount) {
if (result.length() > 0) result += ",";
result += String(signal.spaceTimes[i]);
}
} }
return result; return result;
} }
@@ -751,7 +805,7 @@ void handleStartRecord() {
prefs.putString(("ir_" + buttonName).c_str(), irDataStr); prefs.putString(("ir_" + buttonName).c_str(), irDataStr);
Serial.println("红外信号录入成功: " + buttonName); Serial.println("红外信号录入成功: " + buttonName);
Serial.println("信号长度: " + String(signal.length)); Serial.println("mark数量: " + String(signal.markCount) + ", space数量: " + String(signal.spaceCount));
freeIRSignal(signal); freeIRSignal(signal);
server.send(200, "application/json", "{\"success\":true}"); server.send(200, "application/json", "{\"success\":true}");
@@ -768,7 +822,7 @@ void handleSendIR() {
return; return;
} }
DynamicJsonDocument doc(200); DynamicJsonDocument doc(26700);
deserializeJson(doc, server.arg("plain")); deserializeJson(doc, server.arg("plain"));
String buttonName = doc["button"]; String buttonName = doc["button"];
@@ -818,6 +872,12 @@ void handleSetSettings() {
prefs.putFloat("min_temp", minTemp); prefs.putFloat("min_temp", minTemp);
prefs.putFloat("max_temp", maxTemp); prefs.putFloat("max_temp", maxTemp);
Serial.printf("温度设置已更新 - 最低: %.1f°C, 最高: %.1f°C\n", minTemp, maxTemp);
// 温度设置更改后立即执行一次判断
Serial.println("温度设置已更改,立即执行核心判断...");
executeJudgeLogic();
server.send(200, "application/json", "{\"success\":true}"); server.send(200, "application/json", "{\"success\":true}");
} }

View File

@@ -37,7 +37,7 @@ extern "C" {
// 预处理参数 // 预处理参数
#define MEL_FMIN 0.0f // Mel滤波器最低频率 #define MEL_FMIN 0.0f // Mel滤波器最低频率
#define MEL_FMAX 8000.0f // Mel滤波器最高频率 #define MEL_FMAX 8000.0f // Mel滤波器最高频率
#define WINDOW_TYPE_HANN 1 // 宁窗 #define WINDOW_TYPE_HANN 1 // 宁窗
#define ENERGY_THRESHOLD 0.01f // 音频活动检测阈值 #define ENERGY_THRESHOLD 0.01f // 音频活动检测阈值
#define CONFIDENCE_THRESHOLD 0.6f // 预测置信度阈值 #define CONFIDENCE_THRESHOLD 0.6f // 预测置信度阈值
@@ -100,6 +100,8 @@ float calculate_rms_energy(const int16_t* audio_data, int length);
void audio_model_cleanup(void); void audio_model_cleanup(void);
const unsigned char* get_audio_model_data(void); const unsigned char* get_audio_model_data(void);
size_t get_audio_model_size(void); size_t get_audio_model_size(void);
const char* get_class_name_en(AudioClassType class_id);
const char* get_class_name_cn(AudioClassType class_id);
// ==================== 核心API函数 ==================== // ==================== 核心API函数 ====================
@@ -124,7 +126,7 @@ int audio_model_init(void) {
return -1; return -1;
} }
// 预计算宁窗 // 预计算宁窗
for (int i = 0; i < N_FFT; i++) { for (int i = 0; i < N_FFT; i++) {
g_preprocessor.window_buffer[i] = 0.5f * (1.0f - cosf(2.0f * M_PI * i / (N_FFT - 1))); g_preprocessor.window_buffer[i] = 0.5f * (1.0f - cosf(2.0f * M_PI * i / (N_FFT - 1)));
} }
@@ -193,128 +195,73 @@ int audio_model_predict(const int16_t* audio_data, int audio_length, AudioPredic
yield(); yield();
#endif #endif
// 使用栈上的小缓冲区替代大数组,减少内存使用 // TODO: 集成TensorFlow Lite模型进行真实的音频识别
const int REDUCED_FEATURES = 32; // 减少特征数量 // 当前使用audio_model_data.h中的TensorFlow Lite模型数据
float mel_features[REDUCED_FEATURES]; // 需要实现以下步骤:
// 1. 初始化TensorFlow Lite解释器
// 2. 加载模型数据 (audio_model_data)
// 3. 预处理音频数据为模型输入格式
// 4. 执行推理
// 5. 解析输出结果
// 简化的音频特征提取避免复杂的Mel频谱图计算 // 临时实现:基于音频能量的简单分类,提供更合理的结果
if (preprocess_audio_to_mel_simple(audio_data, audio_length, mel_features, REDUCED_FEATURES) != 0) {
strcpy(g_last_error, "音频预处理失败");
return -1;
}
// 添加看门狗喂狗
#ifdef ARDUINO #ifdef ARDUINO
yield(); Serial.println("警告当前使用临时实现等待TensorFlow Lite模型集成");
#endif #endif
// 使用简化的特征分析替代复杂的TensorFlow Lite推理 // 计算音频能量来做简单的分类判断
// 计算基本统计特征 float rms_energy = calculate_rms_energy(audio_data, audio_length);
float mean_energy = 0.0f;
float energy_variance = 0.0f;
float max_energy = -1000.0f;
float min_energy = 1000.0f;
// 计算平均能量和能量范围 // 添加调试信息:检查音频数据的实际值
for (int i = 0; i < REDUCED_FEATURES; i++) { #ifdef ARDUINO
mean_energy += mel_features[i]; int non_zero_count = 0;
if (mel_features[i] > max_energy) max_energy = mel_features[i]; int16_t min_val = 32767, max_val = -32768;
if (mel_features[i] < min_energy) min_energy = mel_features[i]; long long sum_abs = 0;
// 定期喂狗 for (int i = 0; i < min(100, audio_length); i++) { // 检查前100个样本
if (i % 10 == 0) { if (audio_data[i] != 0) non_zero_count++;
#ifdef ARDUINO if (audio_data[i] < min_val) min_val = audio_data[i];
yield(); if (audio_data[i] > max_val) max_val = audio_data[i];
#endif sum_abs += abs(audio_data[i]);
}
Serial.printf("音频数据调试: 非零样本=%d/100, 最小值=%d, 最大值=%d, 平均绝对值=%lld\n",
non_zero_count, min_val, max_val, sum_abs/100);
#endif
// 基于能量水平进行简单分类
AudioClassType predicted_class;
float confidence;
if (rms_energy > 0.1f) {
// 高能量:可能是关门声或钥匙声
if (rms_energy > 0.3f) {
predicted_class = AUDIO_CLASS_DOOR_CLOSING;
confidence = 0.75f;
} else {
predicted_class = AUDIO_CLASS_KEY_JINGLING;
confidence = 0.65f;
} }
} } else if (rms_energy > 0.02f) {
mean_energy /= REDUCED_FEATURES; // 中等能量:室内有人
predicted_class = AUDIO_CLASS_PERSON_PRESENT;
// 计算能量方差 confidence = 0.70f;
for (int i = 0; i < REDUCED_FEATURES; i++) { } else {
float diff = mel_features[i] - mean_energy; // 低能量:室内无人
energy_variance += diff * diff; predicted_class = AUDIO_CLASS_PERSON_ABSENT;
} confidence = 0.80f;
energy_variance /= REDUCED_FEATURES;
// 添加看门狗喂狗
#ifdef ARDUINO
yield();
#endif
// 基于简化特征的分类逻辑
memset(result->class_probabilities, 0, sizeof(result->class_probabilities));
// 使用能量和方差进行简单分类
float energy_range = max_energy - min_energy;
// 钥匙声特征:中等能量,高方差
float key_score = 0.0f;
if (mean_energy > -5.0f && mean_energy < -2.0f && energy_variance > 2.0f) {
key_score = 0.4f;
} }
// 关门声特征:高能量,低方差 // 设置结果
float door_score = 0.0f; result->predicted_class = predicted_class;
if (mean_energy > -2.0f && energy_variance < 1.0f) { result->confidence = confidence;
door_score = 0.5f;
}
// 人员活动声特征:中等能量,中等方差 // 设置概率分布
float person_score = 0.0f;
if (mean_energy > -6.0f && mean_energy < -1.0f && energy_variance > 0.5f && energy_variance < 3.0f) {
person_score = 0.3f;
}
// 无人声特征:低能量,低方差
float absent_score = 0.0f;
if (mean_energy < -8.0f && energy_variance < 0.5f) {
absent_score = 0.6f;
}
// 添加看门狗喂狗
#ifdef ARDUINO
yield();
#endif
// 归一化概率
float total_score = key_score + door_score + person_score + absent_score;
if (total_score < 0.1f) {
// 默认为有人状态
person_score = 0.4f;
total_score = 0.4f;
}
// 添加少量随机性模拟AI不确定性
uint32_t audio_hash = 0;
for (int i = 0; i < audio_length; i += 1000) {
audio_hash = audio_hash * 31 + (uint32_t)abs(audio_data[i]);
}
float noise_factor = (float)(audio_hash % 50) / 1000.0f; // 0-0.05的随机因子
result->class_probabilities[AUDIO_CLASS_KEY_JINGLING] = (key_score / total_score) + noise_factor;
result->class_probabilities[AUDIO_CLASS_DOOR_CLOSING] = (door_score / total_score) + noise_factor * 0.8f;
result->class_probabilities[AUDIO_CLASS_PERSON_PRESENT] = (person_score / total_score) + noise_factor * 0.6f;
result->class_probabilities[AUDIO_CLASS_PERSON_ABSENT] = (absent_score / total_score) + noise_factor * 0.4f;
// 重新归一化
float prob_sum = 0.0f;
for (int i = 0; i < NUM_CLASSES; i++) { for (int i = 0; i < NUM_CLASSES; i++) {
prob_sum += result->class_probabilities[i]; if (i == (int)predicted_class) {
} result->class_probabilities[i] = confidence;
if (prob_sum > 0) { } else {
for (int i = 0; i < NUM_CLASSES; i++) { result->class_probabilities[i] = (1.0f - confidence) / (NUM_CLASSES - 1);
result->class_probabilities[i] /= prob_sum;
}
}
// 找到最高概率的类别
result->confidence = 0.0f;
result->predicted_class = AUDIO_CLASS_PERSON_PRESENT;
for (int i = 0; i < NUM_CLASSES; i++) {
if (result->class_probabilities[i] > result->confidence) {
result->confidence = result->class_probabilities[i];
result->predicted_class = (AudioClassType)i;
} }
} }
@@ -329,6 +276,11 @@ int audio_model_predict(const int16_t* audio_data, int audio_length, AudioPredic
g_total_confidence += result->confidence; g_total_confidence += result->confidence;
} }
#ifdef ARDUINO
Serial.printf("音频能量: %.4f, 预测类别: %s, 置信度: %.2f\n",
rms_energy, get_class_name_cn(predicted_class), confidence);
#endif
return 0; return 0;
} }
@@ -406,22 +358,16 @@ int preprocess_audio_to_mel_simple(const int16_t* audio_data, int audio_length,
int16_t prev_sample = 0; int16_t prev_sample = 0;
for (int i = start_idx; i < end_idx; i++) { for (int i = start_idx; i < end_idx; i++) {
// 音频增益放大20倍然后进行能量计算 float sample = (float)audio_data[i] / 32768.0f;
int32_t amplified_sample = (int32_t)audio_data[i] * 20;
// 防止溢出限制在int16_t范围内
if (amplified_sample > 32767) amplified_sample = 32767;
if (amplified_sample < -32768) amplified_sample = -32768;
float sample = (float)amplified_sample / 32768.0f;
energy += sample * sample; energy += sample * sample;
// 零交叉率计算 - 使用放大后的音频数据 // 零交叉率计算
if (i > start_idx && if (i > start_idx &&
((amplified_sample >= 0 && prev_sample < 0) || ((audio_data[i] >= 0 && prev_sample < 0) ||
(amplified_sample < 0 && prev_sample >= 0))) { (audio_data[i] < 0 && prev_sample >= 0))) {
zero_crossings += 1.0f; zero_crossings += 1.0f;
} }
prev_sample = (int16_t)amplified_sample; prev_sample = audio_data[i];
// 添加看门狗喂狗,防止长时间计算 // 添加看门狗喂狗,防止长时间计算
#ifdef ARDUINO #ifdef ARDUINO
@@ -479,22 +425,16 @@ int preprocess_audio_to_mel(const int16_t* audio_data, int audio_length, float*
int16_t prev_sample = 0; int16_t prev_sample = 0;
for (int i = start_idx; i < end_idx; i++) { for (int i = start_idx; i < end_idx; i++) {
// 音频增益放大20倍然后进行能量计算 float sample = (float)audio_data[i] / 32768.0f;
int32_t amplified_sample = (int32_t)audio_data[i] * 20;
// 防止溢出限制在int16_t范围内
if (amplified_sample > 32767) amplified_sample = 32767;
if (amplified_sample < -32768) amplified_sample = -32768;
float sample = (float)amplified_sample / 32768.0f;
energy += sample * sample; energy += sample * sample;
// 零交叉率计算 - 使用放大后的音频数据 // 零交叉率计算
if (i > start_idx && if (i > start_idx &&
((amplified_sample >= 0 && prev_sample < 0) || ((audio_data[i] >= 0 && prev_sample < 0) ||
(amplified_sample < 0 && prev_sample >= 0))) { (audio_data[i] < 0 && prev_sample >= 0))) {
zero_crossings += 1.0f; zero_crossings += 1.0f;
} }
prev_sample = (int16_t)amplified_sample; prev_sample = audio_data[i];
// 添加看门狗喂狗,防止长时间计算 // 添加看门狗喂狗,防止长时间计算
#ifdef ARDUINO #ifdef ARDUINO
@@ -670,13 +610,7 @@ float calculate_rms_energy(const int16_t* audio_data, int length) {
float sum = 0.0f; float sum = 0.0f;
for (int i = 0; i < length; i++) { for (int i = 0; i < length; i++) {
// 音频增益放大20倍然后计算RMS能量 float sample = (float)audio_data[i] / 32768.0f; // 归一化到[-1,1]
int32_t amplified_sample = (int32_t)audio_data[i] * 20;
// 防止溢出限制在int16_t范围内
if (amplified_sample > 32767) amplified_sample = 32767;
if (amplified_sample < -32768) amplified_sample = -32768;
float sample = (float)amplified_sample / 32768.0f; // 归一化到[-1,1]
sum += sample * sample; sum += sample * sample;
} }
return sqrtf(sum / length); return sqrtf(sum / length);

7
core.h
View File

@@ -188,10 +188,13 @@ int judge() {
// 获取用户设置的温度范围 (从Preferences读取) // 获取用户设置的温度范围 (从Preferences读取)
Preferences prefs; Preferences prefs;
prefs.begin("DACSC", true); // 只读模式 prefs.begin("DACSC", true); // 只读模式
float min_temp = prefs.getFloat("min_temp", 5.0); // 默认最低温度22°C float min_temp = prefs.getFloat("min_temp", 10.0); // 默认最低温度10°C
float max_temp = prefs.getFloat("max_temp", 28.0); // 默认最高温度26°C float max_temp = prefs.getFloat("max_temp", 28.0); // 默认最高温度28°C
prefs.end(); prefs.end();
// 打印当前使用的温度设置
Serial.printf("当前温度设置 - 最低: %.1f°C, 最高: %.1f°C\n", min_temp, max_temp);
// 判断逻辑:基于节假日、音频识别、时间、温度和湿度的智能控制 // 判断逻辑:基于节假日、音频识别、时间、温度和湿度的智能控制
// 规则1节假日规则优先级最高 // 规则1节假日规则优先级最高

View File

@@ -1,169 +1,336 @@
#include "ir_control.h" #include "ir_control.h"
void initIRControl() { // IRremoteESP8266库的接收器对象
pinMode(IR_RECEIVE_PIN, INPUT); // 增加缓冲区大小到500以支持长信号超时设置为15ms
pinMode(IR_SEND_PIN, OUTPUT); IRrecv irrecv(IR_RECEIVE_PIN, 500, 15);
digitalWrite(IR_SEND_PIN, LOW);
Serial.println("红外控制模块初始化完成"); void initIRControl() {
Serial.print("接收引脚: "); // 配置RMT发送通道
Serial.println(IR_RECEIVE_PIN); rmt_config_t rmt_tx_config = RMT_DEFAULT_CONFIG_TX((gpio_num_t)IR_SEND_PIN, RMT_TX_CHANNEL);
Serial.print("发送引脚: "); rmt_tx_config.clk_div = RMT_CLK_DIV;
Serial.println(IR_SEND_PIN); rmt_tx_config.mem_block_num = RMT_MEM_BLOCK_NUM;
rmt_tx_config.tx_config.carrier_en = RMT_TX_CARRIER_EN;
rmt_tx_config.tx_config.carrier_freq_hz = RMT_TX_CARRIER_FREQ_HZ;
rmt_tx_config.tx_config.carrier_duty_percent = RMT_TX_CARRIER_DUTY_PERCENT;
rmt_tx_config.tx_config.carrier_level = RMT_TX_CARRIER_LEVEL;
rmt_tx_config.tx_config.idle_level = RMT_IDLE_LEVEL;
rmt_tx_config.tx_config.idle_output_en = true;
esp_err_t err = rmt_config(&rmt_tx_config);
if (err != ESP_OK) {
Serial.printf("RMT发送通道配置失败: %s\n", esp_err_to_name(err));
return;
}
err = rmt_driver_install(RMT_TX_CHANNEL, 0, 0);
if (err != ESP_OK) {
Serial.printf("RMT发送驱动安装失败: %s\n", esp_err_to_name(err));
return;
}
Serial.println("红外控制模块初始化完成 (使用RMT发送 + IRremoteESP8266接收)");
Serial.printf("发送引脚: %d (RMT通道: %d)\n", IR_SEND_PIN, RMT_TX_CHANNEL);
Serial.printf("接收引脚: %d (IRremoteESP8266)\n", IR_RECEIVE_PIN);
Serial.printf("载波频率: %d Hz\n", RMT_TX_CARRIER_FREQ_HZ);
Serial.printf("时钟分辨率: %d us\n", RMT_CLK_DIV);
Serial.printf("接收缓冲区大小: 500, 超时: 15ms\n");
// 初始化IRremoteESP8266接收器
irrecv.enableIRIn(); // 启用红外接收
Serial.println("IRremoteESP8266接收器已启用");
} }
bool checkIRSignalStart() { bool checkIRSignalStart() {
return (digitalRead(IR_RECEIVE_PIN) == LOW); // 使用IRremoteESP8266检查是否有信号开始
decode_results results;
// 尝试解码,但不等待完整信号
if (irrecv.decode(&results, nullptr, 0, false)) {
// 有信号开始,恢复接收状态
irrecv.resume();
return true;
}
return false;
} }
IRSignal receiveIRSignal() { IRSignal receiveIRSignal() {
IRSignal signal; IRSignal signal;
signal.data = nullptr; signal.markTimes = nullptr;
signal.length = 0; signal.spaceTimes = nullptr;
signal.markCount = 0;
signal.spaceCount = 0;
signal.carrierFreq = IR_CARRIER_FREQ;
signal.isValid = false; signal.isValid = false;
Serial.println("开始接收红外信号..."); Serial.println("开始接收红外信号 (使用IRremoteESP8266)...");
Serial.println("请按下遥控器按键...");
// 分配内存存储信号数据 decode_results results;
signal.data = (unsigned int*)malloc(MAX_SIGNAL_LENGTH * sizeof(unsigned int));
if (signal.data == nullptr) {
Serial.println("内存分配失败");
return signal;
}
unsigned long startTime = micros(); // 清空接收缓冲区
unsigned long lastChange = startTime; irrecv.resume();
bool currentState = HIGH;
bool lastState = HIGH;
// 等待信号开始(第一个低电平) // 等待接收完整的红外信号
while (digitalRead(IR_RECEIVE_PIN) == HIGH && (micros() - startTime) < RECEIVE_TIMEOUT_US) { unsigned long startTime = millis();
delayMicroseconds(10); while (millis() - startTime < (RECEIVE_TIMEOUT_US / 1000)) {
} if (irrecv.decode(&results)) {
Serial.printf("检测到红外信号!原始数据长度: %d\n", results.rawlen);
Serial.printf("Raw数组总长度: %d\n", results.rawlen);
if ((micros() - startTime) >= RECEIVE_TIMEOUT_US) { // 检查缓冲区溢出
Serial.println("等待信号超时"); if (results.overflow) {
free(signal.data); Serial.println("警告: 接收缓冲区溢出!信号可能不完整");
signal.data = nullptr; Serial.println("建议: 增加缓冲区大小或检查信号长度");
return signal; }
}
Serial.println("检测到信号开始"); // 检查信号长度是否合理(典型红外信号应该有足够的数据)
lastChange = micros(); if (results.rawlen < 10) {
lastState = LOW; Serial.printf("警告: 信号长度过短 (%d),可能不是完整信号\n", results.rawlen);
signal.length = 0; } else if (results.rawlen >= 490) { // 接近缓冲区上限
Serial.printf("警告: 信号长度接近缓冲区上限 (%d/500),可能被截断\n", results.rawlen);
}
// 接收信号数据 // 打印接收到的协议信息
while (signal.length < MAX_SIGNAL_LENGTH) { Serial.printf("协议: %s\n", typeToString(results.decode_type).c_str());
currentState = digitalRead(IR_RECEIVE_PIN); Serial.printf("值: 0x%08X\n", results.value);
Serial.printf("位数: %d\n", results.bits);
if (currentState != lastState) { if (results.rawlen > 1) {
// 状态改变,记录持续时间 // IRremoteESP8266的rawbuf包含原始时序数据
unsigned long duration = micros() - lastChange; // rawbuf[0]是未使用的实际数据从rawbuf[1]开始
signal.data[signal.length] = duration; // 数据格式mark, space, mark, space, ...
signal.length++;
lastState = currentState; int dataLength = results.rawlen - 1; // 减去未使用的第一个元素
lastChange = micros();
}
// 检查是否信号结束(高电平持续时间过长) // 计算mark和space的数量
if (currentState == HIGH && (micros() - lastChange) > SIGNAL_END_TIMEOUT_US) { signal.markCount = (dataLength + 1) / 2; // 奇数位置是mark
Serial.println("检测到信号结束"); signal.spaceCount = dataLength / 2; // 偶数位置是space
Serial.printf("数据长度: %d, mark数量: %d, space数量: %d\n",
dataLength, signal.markCount, signal.spaceCount);
// 分配mark时间数组
if (signal.markCount > 0) {
signal.markTimes = (unsigned int*)malloc(signal.markCount * sizeof(unsigned int));
if (signal.markTimes == nullptr) {
Serial.println("mark时间数组内存分配失败");
irrecv.resume();
return signal;
}
// 提取mark时间奇数索引1, 3, 5, ...
for (int i = 0; i < signal.markCount; i++) {
int rawIndex = i * 2 + 1; // 1, 3, 5, ...
if (rawIndex < results.rawlen) {
// IRremoteESP8266的时间单位是tick需要转换为微秒
// 默认tick = 50us
signal.markTimes[i] = results.rawbuf[rawIndex] * kRawTick;
}
}
}
// 分配space时间数组
if (signal.spaceCount > 0) {
signal.spaceTimes = (unsigned int*)malloc(signal.spaceCount * sizeof(unsigned int));
if (signal.spaceTimes == nullptr) {
Serial.println("space时间数组内存分配失败");
if (signal.markTimes != nullptr) {
free(signal.markTimes);
signal.markTimes = nullptr;
}
irrecv.resume();
return signal;
}
// 提取space时间偶数索引2, 4, 6, ...
for (int i = 0; i < signal.spaceCount; i++) {
int rawIndex = i * 2 + 2; // 2, 4, 6, ...
if (rawIndex < results.rawlen) {
// IRremoteESP8266的时间单位是tick需要转换为微秒
signal.spaceTimes[i] = results.rawbuf[rawIndex] * kRawTick;
}
}
}
signal.isValid = true;
Serial.printf("IRremoteESP8266信号接收成功mark数量: %d, space数量: %d\n",
signal.markCount, signal.spaceCount);
// 检查信号头部特征典型的9000us mark + 4500us space
if (signal.markCount > 0 && signal.spaceCount > 0) {
unsigned int firstMark = signal.markTimes[0];
unsigned int firstSpace = signal.spaceTimes[0];
Serial.printf("信号头部: mark=%dus, space=%dus\n", firstMark, firstSpace);
// 检查是否有典型的信号头
if (firstMark > 8000 && firstMark < 10000 && firstSpace > 3500 && firstSpace < 5500) {
Serial.println("检测到标准信号头 (约9ms mark + 4.5ms space)");
} else {
Serial.println("警告: 信号头不符合标准格式,可能丢失或不完整");
}
}
// 打印前几个时序数据用于调试
Serial.print("前几个时序数据(us): ");
for (int i = 0; i < min(10, (int)results.rawlen - 1); i++) {
Serial.printf("%d ", results.rawbuf[i + 1] * kRawTick);
}
Serial.println();
// 打印原始数据的十六进制表示
Serial.print("原始数据(tick): ");
for (int i = 1; i < min(11, (int)results.rawlen); i++) {
Serial.printf("%d ", results.rawbuf[i]);
}
Serial.println();
} else {
Serial.println("接收到的信号数据长度不足");
}
// 恢复接收状态
irrecv.resume();
break; break;
} }
// 总体超时检查 // 短暂延时避免CPU占用过高
if ((micros() - startTime) > RECEIVE_TIMEOUT_US) { delay(10);
Serial.println("接收总体超时");
break;
}
} }
if (signal.length > 0) { if (!signal.isValid) {
signal.isValid = true; Serial.println("IRremoteESP8266接收超时或无有效信号");
Serial.print("信号接收成功,长度: "); Serial.println("请检查:");
Serial.println(signal.length); Serial.println("1. 遥控器是否有电");
Serial.println("2. 红外接收器是否正确连接到引脚 " + String(IR_RECEIVE_PIN));
// 重新分配内存以节省空间 Serial.println("3. 遥控器是否对准红外接收器");
signal.data = (unsigned int*)realloc(signal.data, signal.length * sizeof(unsigned int));
if (signal.data == nullptr) {
Serial.println("内存重新分配失败");
signal.isValid = false;
signal.length = 0;
}
} else {
Serial.println("未接收到有效信号");
free(signal.data);
signal.data = nullptr;
} }
return signal; return signal;
} }
// generateCarrier函数已被RMT模块替代不再需要
bool sendIRSignal(const IRSignal& signal) { bool sendIRSignal(const IRSignal& signal) {
if (!isValidIRSignal(signal)) { if (!isValidIRSignal(signal)) {
Serial.println("信号无效,无法发送"); Serial.println("信号无效,无法发送");
return false; return false;
} }
Serial.println("开始发送红外信号..."); Serial.println("开始发送红外信号 (使用RMT)...");
Serial.print("信号长度: "); Serial.printf("载波频率: %d Hz\n", signal.carrierFreq);
Serial.println(signal.length); Serial.printf("mark数量: %d, space数量: %d\n", signal.markCount, signal.spaceCount);
// 禁用中断以确保精确的时序 // 计算需要的RMT项目数量
noInterrupts(); int maxCount = max(signal.markCount, signal.spaceCount);
size_t item_count = maxCount;
bool state = LOW; // 红外信号通常以低电平开始 // 计算并显示raw数组总长度mark + space的总数
int totalRawLength = signal.markCount + signal.spaceCount;
Serial.printf("发送Raw数组总长度: %d (mark: %d + space: %d)\n",
totalRawLength, signal.markCount, signal.spaceCount);
for (int i = 0; i < signal.length; i++) { // 分配RMT项目数组
digitalWrite(IR_SEND_PIN, state); rmt_item32_t* items = (rmt_item32_t*)malloc(item_count * sizeof(rmt_item32_t));
delayMicroseconds(signal.data[i]); if (items == nullptr) {
state = !state; // 切换状态 Serial.println("RMT项目内存分配失败");
return false;
} }
// 确保最后是低电平 // 构建RMT数据项
digitalWrite(IR_SEND_PIN, LOW); for (int i = 0; i < maxCount; i++) {
items[i].level0 = 1; // mark期间为高电平载波调制
items[i].duration0 = (i < signal.markCount) ? signal.markTimes[i] : 0;
// 重新启用中断 items[i].level1 = 0; // space期间为低电平无载波
interrupts(); items[i].duration1 = (i < signal.spaceCount) ? signal.spaceTimes[i] : 0;
}
Serial.println("信号发送完成"); // 发送RMT数据
esp_err_t err = rmt_write_items(RMT_TX_CHANNEL, items, item_count, true);
if (err != ESP_OK) {
Serial.printf("RMT发送失败: %s\n", esp_err_to_name(err));
free(items);
return false;
}
// 等待发送完成
err = rmt_wait_tx_done(RMT_TX_CHANNEL, pdMS_TO_TICKS(1000));
if (err != ESP_OK) {
Serial.printf("RMT发送等待超时: %s\n", esp_err_to_name(err));
free(items);
return false;
}
free(items);
Serial.println("RMT信号发送完成");
return true; return true;
} }
void freeIRSignal(IRSignal& signal) { void freeIRSignal(IRSignal& signal) {
if (signal.data != nullptr) { if (signal.markTimes != nullptr) {
free(signal.data); free(signal.markTimes);
signal.data = nullptr; signal.markTimes = nullptr;
} }
signal.length = 0; if (signal.spaceTimes != nullptr) {
free(signal.spaceTimes);
signal.spaceTimes = nullptr;
}
signal.markCount = 0;
signal.spaceCount = 0;
signal.carrierFreq = 0;
signal.isValid = false; signal.isValid = false;
} }
IRSignal copyIRSignal(const IRSignal& source) { IRSignal copyIRSignal(const IRSignal& source) {
IRSignal copy; IRSignal copy;
copy.data = nullptr; copy.markTimes = nullptr;
copy.length = 0; copy.spaceTimes = nullptr;
copy.markCount = 0;
copy.spaceCount = 0;
copy.carrierFreq = 0;
copy.isValid = false; copy.isValid = false;
if (!isValidIRSignal(source)) { if (!isValidIRSignal(source)) {
return copy; return copy;
} }
// 分配内存 // 复制mark时间数组
copy.data = (unsigned int*)malloc(source.length * sizeof(unsigned int)); if (source.markCount > 0 && source.markTimes != nullptr) {
if (copy.data == nullptr) { copy.markTimes = (unsigned int*)malloc(source.markCount * sizeof(unsigned int));
Serial.println("复制信号时内存分配失败"); if (copy.markTimes == nullptr) {
return copy; Serial.println("复制mark时间数组时内存分配失败");
return copy;
}
for (int i = 0; i < source.markCount; i++) {
copy.markTimes[i] = source.markTimes[i];
}
copy.markCount = source.markCount;
} }
// 复制数据 // 复制space时间数组
for (int i = 0; i < source.length; i++) { if (source.spaceCount > 0 && source.spaceTimes != nullptr) {
copy.data[i] = source.data[i]; copy.spaceTimes = (unsigned int*)malloc(source.spaceCount * sizeof(unsigned int));
if (copy.spaceTimes == nullptr) {
Serial.println("复制space时间数组时内存分配失败");
if (copy.markTimes != nullptr) {
free(copy.markTimes);
copy.markTimes = nullptr;
copy.markCount = 0;
}
return copy;
}
for (int i = 0; i < source.spaceCount; i++) {
copy.spaceTimes[i] = source.spaceTimes[i];
}
copy.spaceCount = source.spaceCount;
} }
copy.length = source.length; copy.carrierFreq = source.carrierFreq;
copy.isValid = true; copy.isValid = true;
return copy; return copy;
@@ -176,33 +343,56 @@ void printIRSignal(const IRSignal& signal, int maxPrint) {
} }
Serial.println("=== 红外信号数据 ==="); Serial.println("=== 红外信号数据 ===");
Serial.print("信号长度: "); Serial.print("载波频率: ");
Serial.println(signal.length); Serial.print(signal.carrierFreq);
Serial.println(" Hz");
Serial.print("mark数量: ");
Serial.println(signal.markCount);
Serial.print("space数量: ");
Serial.println(signal.spaceCount);
Serial.print("信号有效: "); Serial.print("信号有效: ");
Serial.println(signal.isValid ? "" : ""); Serial.println(signal.isValid ? "" : "");
int printCount = (maxPrint == 0) ? signal.length : min(maxPrint, signal.length); // 打印mark时间
int markPrintCount = (maxPrint == 0) ? signal.markCount : min(maxPrint, signal.markCount);
Serial.println("原始数据 (微秒):"); Serial.println("Mark时间 (微秒):");
for (int i = 0; i < printCount; i++) { for (int i = 0; i < markPrintCount; i++) {
Serial.print("Index "); Serial.print("Mark ");
Serial.print(i); Serial.print(i);
Serial.print(": "); Serial.print(": ");
Serial.print(signal.data[i]); Serial.print(signal.markTimes[i]);
Serial.print(" us ("); Serial.println(" us");
Serial.print((i % 2 == 0) ? "LOW" : "HIGH");
Serial.println(")");
} }
if (printCount < signal.length) { if (markPrintCount < signal.markCount) {
Serial.print("... 还有 "); Serial.print("... 还有 ");
Serial.print(signal.length - printCount); Serial.print(signal.markCount - markPrintCount);
Serial.println(" 个数据点未显示"); Serial.println("mark数据点未显示");
}
// 打印space时间
int spacePrintCount = (maxPrint == 0) ? signal.spaceCount : min(maxPrint, signal.spaceCount);
Serial.println("Space时间 (微秒):");
for (int i = 0; i < spacePrintCount; i++) {
Serial.print("Space ");
Serial.print(i);
Serial.print(": ");
Serial.print(signal.spaceTimes[i]);
Serial.println(" us");
}
if (spacePrintCount < signal.spaceCount) {
Serial.print("... 还有 ");
Serial.print(signal.spaceCount - spacePrintCount);
Serial.println(" 个space数据点未显示");
} }
Serial.println("=================="); Serial.println("==================");
} }
bool isValidIRSignal(const IRSignal& signal) { bool isValidIRSignal(const IRSignal& signal) {
return (signal.data != nullptr && signal.length > 0 && signal.isValid); return (signal.isValid &&
((signal.markTimes != nullptr && signal.markCount > 0) ||
(signal.spaceTimes != nullptr && signal.spaceCount > 0)) &&
signal.carrierFreq > 0);
} }

View File

@@ -2,12 +2,19 @@
#define IR_CONTROL_H #define IR_CONTROL_H
#include <Arduino.h> #include <Arduino.h>
#include "driver/rmt.h"
#include "driver/gpio.h"
#include <IRrecv.h>
#include <IRutils.h>
// 红外信号结构体 // 红外信号结构体
struct IRSignal { struct IRSignal {
unsigned int* data; // 原始信号数据数组(微秒) unsigned int* markTimes; // mark时间数组(微秒)
int length; // 信号长度 unsigned int* spaceTimes; // space时间数组微秒
bool isValid; // 信号是否有效 int markCount; // mark数量
int spaceCount; // space数量
unsigned int carrierFreq; // 载波频率Hz
bool isValid; // 信号是否有效
}; };
// 配置参数 // 配置参数
@@ -16,6 +23,22 @@ struct IRSignal {
#define MAX_SIGNAL_LENGTH 1000 #define MAX_SIGNAL_LENGTH 1000
#define RECEIVE_TIMEOUT_US 1000000 // 1秒接收超时 #define RECEIVE_TIMEOUT_US 1000000 // 1秒接收超时
#define SIGNAL_END_TIMEOUT_US 50000 // 50ms信号结束判断 #define SIGNAL_END_TIMEOUT_US 50000 // 50ms信号结束判断
#define IR_CARRIER_FREQ 38000 // 38kHz载波频率
#define CARRIER_PERIOD_US 26 // 38kHz载波周期微秒
// RMT配置参数
#define RMT_TX_CHANNEL RMT_CHANNEL_0 // RMT发送通道
#define RMT_RX_CHANNEL RMT_CHANNEL_1 // RMT接收通道
#define RMT_CLK_DIV 80 // RMT时钟分频器 (80MHz / 80 = 1MHz, 1us分辨率)
#define RMT_MEM_BLOCK_NUM 1 // RMT内存块数量
#define RMT_TX_CARRIER_EN true // 启用发送载波
#define RMT_TX_CARRIER_FREQ_HZ 38000 // 发送载波频率
#define RMT_TX_CARRIER_DUTY_PERCENT 33 // 载波占空比
#define RMT_TX_CARRIER_LEVEL RMT_CARRIER_LEVEL_HIGH // 载波电平
#define RMT_IDLE_LEVEL RMT_IDLE_LEVEL_LOW // 空闲电平
#define RMT_RX_FILTER_EN true // 启用接收滤波器
#define RMT_RX_FILTER_THRESH_US 100 // 接收滤波器阈值(微秒)
#define RMT_RX_IDLE_THRESH_US 10000 // 接收空闲阈值(微秒)
/** /**
* 初始化红外控制模块 * 初始化红外控制模块
@@ -33,9 +56,12 @@ bool checkIRSignalStart();
/** /**
* 接收红外信号 * 接收红外信号
* @return IRSignal 包含原始红外信号数据的结构体 * @return IRSignal 包含红外信号mark/space时序和载波频率的结构体
* - data: 指向信号数据数组的指针 * - markTimes: 指向mark时间数组的指针
* - length: 信号数据长度 * - spaceTimes: 指向space时间数组的指针
* - markCount: mark数量
* - spaceCount: space数量
* - carrierFreq: 载波频率
* - isValid: 是否成功接收到有效信号 * - isValid: 是否成功接收到有效信号
* *
* 注意:调用者需要在使用完毕后调用 freeIRSignal() 释放内存 * 注意:调用者需要在使用完毕后调用 freeIRSignal() 释放内存