2025-08-28 12:00:56 +08:00

490 lines
15 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
车牌识别接口模块
预留接口可接入各种OCR模型进行车牌号识别
"""
import cv2
import numpy as np
from typing import List, Optional, Dict, Any
from abc import ABC, abstractmethod
class PlateRecognizerInterface(ABC):
"""车牌识别接口基类"""
@abstractmethod
def recognize(self, plate_image: np.ndarray) -> Dict[str, Any]:
"""
识别车牌号
Args:
plate_image: 车牌图像 (BGR格式)
Returns:
识别结果字典,包含:
{
'text': str, # 识别的车牌号
'confidence': float, # 置信度 (0-1)
'success': bool # 是否识别成功
}
"""
pass
@abstractmethod
def batch_recognize(self, plate_images: List[np.ndarray]) -> List[Dict[str, Any]]:
"""
批量识别车牌号
Args:
plate_images: 车牌图像列表
Returns:
识别结果列表
"""
pass
class MockPlateRecognizer(PlateRecognizerInterface):
"""模拟车牌识别器(用于测试)"""
def __init__(self):
self.mock_plates = [
"京A12345", "沪B67890", "粤C11111", "川D22222",
"鲁E33333", "苏F44444", "浙G55555", "闽H66666"
]
self.call_count = 0
def recognize(self, plate_image: np.ndarray) -> Dict[str, Any]:
"""
模拟识别单个车牌
Args:
plate_image: 车牌图像
Returns:
模拟识别结果
"""
# 模拟处理时间
import time
time.sleep(0.01) # 10ms模拟处理时间
# 简单的图像质量检查
if plate_image is None or plate_image.size == 0:
return {
'text': '',
'confidence': 0.0,
'success': False
}
# 检查图像尺寸
height, width = plate_image.shape[:2]
if width < 50 or height < 20:
return {
'text': '',
'confidence': 0.3,
'success': False
}
# 模拟识别结果
plate_text = self.mock_plates[self.call_count % len(self.mock_plates)]
confidence = 0.85 + (self.call_count % 10) * 0.01 # 0.85-0.94
self.call_count += 1
return {
'text': plate_text,
'confidence': confidence,
'success': True
}
def batch_recognize(self, plate_images: List[np.ndarray]) -> List[Dict[str, Any]]:
"""
批量识别车牌
Args:
plate_images: 车牌图像列表
Returns:
识别结果列表
"""
results = []
for plate_image in plate_images:
result = self.recognize(plate_image)
results.append(result)
return results
class PaddleOCRRecognizer(PlateRecognizerInterface):
"""PaddleOCR车牌识别器示例实现"""
def __init__(self, use_gpu: bool = True):
"""
初始化PaddleOCR识别器
Args:
use_gpu: 是否使用GPU
"""
self.use_gpu = use_gpu
self.ocr = None
self._init_ocr()
def _init_ocr(self):
"""初始化OCR模型"""
try:
# 这里可以接入PaddleOCR
# from paddleocr import PaddleOCR
# self.ocr = PaddleOCR(use_angle_cls=True, lang='ch', use_gpu=self.use_gpu)
print("PaddleOCR初始化完成示例代码需要安装PaddleOCR")
except ImportError:
print("PaddleOCR未安装使用模拟识别器")
self.ocr = None
def recognize(self, plate_image: np.ndarray) -> Dict[str, Any]:
"""
使用PaddleOCR识别车牌
Args:
plate_image: 车牌图像
Returns:
识别结果
"""
if self.ocr is None:
# 回退到模拟识别
mock_recognizer = MockPlateRecognizer()
return mock_recognizer.recognize(plate_image)
try:
# 使用PaddleOCR进行识别
results = self.ocr.ocr(plate_image, cls=True)
if results and len(results) > 0 and results[0]:
# 提取文本和置信度
text_results = []
for line in results[0]:
text = line[1][0]
confidence = line[1][1]
text_results.append((text, confidence))
# 选择置信度最高的结果
if text_results:
best_result = max(text_results, key=lambda x: x[1])
return {
'text': best_result[0],
'confidence': best_result[1],
'success': True
}
except Exception as e:
print(f"PaddleOCR识别失败: {e}")
return {
'text': '',
'confidence': 0.0,
'success': False
}
def batch_recognize(self, plate_images: List[np.ndarray]) -> List[Dict[str, Any]]:
"""
批量识别
Args:
plate_images: 车牌图像列表
Returns:
识别结果列表
"""
results = []
for plate_image in plate_images:
result = self.recognize(plate_image)
results.append(result)
return results
class TesseractRecognizer(PlateRecognizerInterface):
"""Tesseract车牌识别器示例实现"""
def __init__(self, lang: str = 'chi_sim+eng'):
"""
初始化Tesseract识别器
Args:
lang: 识别语言
"""
self.lang = lang
self.tesseract_available = self._check_tesseract()
def _check_tesseract(self) -> bool:
"""检查Tesseract是否可用"""
try:
import pytesseract
return True
except ImportError:
print("pytesseract未安装使用模拟识别器")
return False
def recognize(self, plate_image: np.ndarray) -> Dict[str, Any]:
"""
使用Tesseract识别车牌
Args:
plate_image: 车牌图像
Returns:
识别结果
"""
if not self.tesseract_available:
# 回退到模拟识别
mock_recognizer = MockPlateRecognizer()
return mock_recognizer.recognize(plate_image)
try:
import pytesseract
# 图像预处理
processed_image = self._preprocess_image(plate_image)
# 使用Tesseract识别
text = pytesseract.image_to_string(
processed_image,
lang=self.lang,
config='--psm 8 --oem 3 -c tessedit_char_whitelist=0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ京沪粤川鲁苏浙闽'
)
# 清理识别结果
text = text.strip().replace(' ', '').replace('\n', '')
if text and len(text) >= 5: # 车牌号至少5位
return {
'text': text,
'confidence': 0.8, # Tesseract不直接提供置信度
'success': True
}
except Exception as e:
print(f"Tesseract识别失败: {e}")
return {
'text': '',
'confidence': 0.0,
'success': False
}
def _preprocess_image(self, image: np.ndarray) -> np.ndarray:
"""图像预处理"""
# 转换为灰度图
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
# 调整尺寸
height, width = gray.shape
if width < 200:
scale = 200 / width
new_width = int(width * scale)
new_height = int(height * scale)
gray = cv2.resize(gray, (new_width, new_height))
# 二值化
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
return binary
def batch_recognize(self, plate_images: List[np.ndarray]) -> List[Dict[str, Any]]:
"""
批量识别
Args:
plate_images: 车牌图像列表
Returns:
识别结果列表
"""
results = []
for plate_image in plate_images:
result = self.recognize(plate_image)
results.append(result)
return results
class PlateRecognizerManager:
"""车牌识别管理器"""
def __init__(self, recognizer_type: str = 'mock'):
"""
初始化识别管理器
Args:
recognizer_type: 识别器类型 ('mock', 'paddleocr', 'tesseract')
"""
self.recognizer_type = recognizer_type
self.recognizer = self._create_recognizer(recognizer_type)
def _create_recognizer(self, recognizer_type: str) -> PlateRecognizerInterface:
"""创建识别器"""
if recognizer_type == 'mock':
return MockPlateRecognizer()
elif recognizer_type == 'paddleocr':
return PaddleOCRRecognizer()
elif recognizer_type == 'tesseract':
return TesseractRecognizer()
else:
print(f"未知的识别器类型: {recognizer_type},使用模拟识别器")
return MockPlateRecognizer()
def recognize_plates(self, plate_images: List[np.ndarray]) -> List[Dict[str, Any]]:
"""
识别车牌列表
Args:
plate_images: 车牌图像列表
Returns:
识别结果列表
"""
if not plate_images:
return []
return self.recognizer.batch_recognize(plate_images)
def switch_recognizer(self, recognizer_type: str):
"""
切换识别器
Args:
recognizer_type: 新的识别器类型
"""
self.recognizer_type = recognizer_type
self.recognizer = self._create_recognizer(recognizer_type)
print(f"已切换到识别器: {recognizer_type}")
def get_recognizer_info(self) -> Dict[str, Any]:
"""
获取识别器信息
Returns:
识别器信息
"""
return {
'type': self.recognizer_type,
'class': self.recognizer.__class__.__name__
}
def preprocess_blue_plate(self, plate_image: np.ndarray, original_image: np.ndarray, bbox: List[int]) -> np.ndarray:
"""
蓝色车牌预处理:倾斜矫正
Args:
plate_image: 切割后的车牌图像
original_image: 原始图像
bbox: 边界框坐标 [x1, y1, x2, y2]
Returns:
矫正后的车牌图像
"""
try:
# 从原图中提取车牌区域
x1, y1, x2, y2 = bbox
roi = original_image[y1:y2, x1:x2]
# 获取蓝色车牌的二值图像
bin_img = self._get_blue_img_bin(roi)
# 倾斜矫正
corrected_img = self._deskew_plate(bin_img, roi)
return corrected_img
except Exception as e:
print(f"蓝色车牌预处理失败: {e}")
return plate_image
def _get_blue_img_bin(self, img: np.ndarray) -> np.ndarray:
"""
获取蓝色车牌的二值图像
"""
# 掩膜BGR通道若像素B分量在 100~255 且 G分量在 0~190 且 R分量在 0~140 置255白色否则置0黑色
mask_bgr = cv2.inRange(img, (100, 0, 0), (255, 190, 140))
# 转换成 HSV 颜色空间
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(img_hsv) # 分离通道 色调(H),饱和度(S),明度(V)
mask_s = cv2.inRange(s, 80, 255) # 取饱和度通道进行掩膜得到二值图像
# 与操作,两个二值图像都为白色才保留,否则置黑
rgbs = mask_bgr & mask_s
# 核的横向分量大,使车牌数字尽量连在一起
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15, 3))
img_rgbs_dilate = cv2.dilate(rgbs, kernel, 3) # 膨胀,减小车牌空洞
return img_rgbs_dilate
def _order_points(self, pts: np.ndarray) -> np.ndarray:
"""
将四点按 左上、右上、右下、左下 排序
"""
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)] # 左上
rect[2] = pts[np.argmax(s)] # 右下
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)] # 右上
rect[3] = pts[np.argmax(diff)] # 左下
return rect
def _deskew_plate(self, bin_img: np.ndarray, original_roi: np.ndarray) -> np.ndarray:
"""
车牌倾斜矫正
Args:
bin_img: 二值图像
original_roi: 原始ROI区域
Returns:
矫正后的原始图像(未被掩模,但经过旋转和切割)
"""
try:
# 找最大轮廓
cnts, _ = cv2.findContours(bin_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not cnts:
return original_roi
c = max(cnts, key=cv2.contourArea)
# 最小外接矩形
rect = cv2.minAreaRect(c)
box = cv2.boxPoints(rect)
box = np.array(box, dtype="float32")
# 排序四个点
pts_src = self._order_points(box)
# 计算目标矩形宽高
(tl, tr, br, bl) = pts_src
widthA = np.linalg.norm(br - bl)
widthB = np.linalg.norm(tr - tl)
maxWidth = int(max(widthA, widthB))
heightA = np.linalg.norm(tr - br)
heightB = np.linalg.norm(tl - bl)
maxHeight = int(max(heightA, heightB))
# 确保尺寸合理
if maxWidth < 10 or maxHeight < 10:
return original_roi
# 目标点集合
pts_dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
# 透视变换
M = cv2.getPerspectiveTransform(pts_src, pts_dst)
warped = cv2.warpPerspective(original_roi, M, (maxWidth, maxHeight))
return warped
except Exception as e:
print(f"车牌矫正失败: {e}")
return original_roi