main-66 #5
4
.idea/License_plate_recognition.iml
generated
4
.idea/License_plate_recognition.iml
generated
@ -5,8 +5,4 @@
|
||||
<orderEntry type="jdk" jdkName="cnm" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
<component name="PyDocumentationSettings">
|
||||
<option name="format" value="PLAIN" />
|
||||
<option name="myDocStringFormat" value="Plain" />
|
||||
</component>
|
||||
</module>
|
BIN
LPRNET_part/1.jpg
Normal file
BIN
LPRNET_part/1.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 3.8 KiB |
BIN
LPRNET_part/2.jpg
Normal file
BIN
LPRNET_part/2.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 3.0 KiB |
BIN
LPRNET_part/6ce2ec7dbed6cf3c8403abe2683c57e5.jpg
Normal file
BIN
LPRNET_part/6ce2ec7dbed6cf3c8403abe2683c57e5.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 4.0 KiB |
BIN
LPRNET_part/LPRNet__iteration_74000.pth
Normal file
BIN
LPRNET_part/LPRNet__iteration_74000.pth
Normal file
Binary file not shown.
BIN
LPRNET_part/c11304d10bcd47911e458398d1ea445d.jpg
Normal file
BIN
LPRNET_part/c11304d10bcd47911e458398d1ea445d.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 7.3 KiB |
BIN
LPRNET_part/c6ab0fbcfb2b6fbe15c5b3eb9806a28b.jpg
Normal file
BIN
LPRNET_part/c6ab0fbcfb2b6fbe15c5b3eb9806a28b.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 64 KiB |
@ -1,3 +1,4 @@
|
||||
# 导入必要的库
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import cv2
|
||||
@ -11,6 +12,7 @@ from PIL import Image
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
|
||||
# LPRNet字符集定义(与训练时保持一致)
|
||||
# 包含中国省份简称、数字、字母和特殊字符
|
||||
CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
|
||||
'苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
|
||||
'桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新',
|
||||
@ -19,84 +21,115 @@ CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
|
||||
'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
|
||||
'W', 'X', 'Y', 'Z', 'I', 'O', '-']
|
||||
|
||||
# 创建字符到索引的映射字典
|
||||
CHARS_DICT = {char: i for i, char in enumerate(CHARS)}
|
||||
|
||||
# 简化的LPRNet模型定义
|
||||
# 简化的LPRNet模型定义 - 基础卷积块
|
||||
class small_basic_block(nn.Module):
|
||||
def __init__(self, ch_in, ch_out):
|
||||
super(small_basic_block, self).__init__()
|
||||
# 定义一个小的基本卷积块,包含四个卷积层
|
||||
self.block = nn.Sequential(
|
||||
# 1x1卷积,降低通道数
|
||||
nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),
|
||||
nn.ReLU(),
|
||||
# 3x1卷积,处理水平特征
|
||||
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),
|
||||
nn.ReLU(),
|
||||
# 1x3卷积,处理垂直特征
|
||||
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),
|
||||
nn.ReLU(),
|
||||
# 1x1卷积,恢复通道数
|
||||
nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.block(x)
|
||||
|
||||
# LPRNet模型定义 - 车牌识别网络
|
||||
class LPRNet(nn.Module):
|
||||
def __init__(self, lpr_max_len, phase, class_num, dropout_rate):
|
||||
super(LPRNet, self).__init__()
|
||||
self.phase = phase
|
||||
self.lpr_max_len = lpr_max_len
|
||||
self.class_num = class_num
|
||||
|
||||
# 定义主干网络
|
||||
self.backbone = nn.Sequential(
|
||||
# 初始卷积层
|
||||
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0
|
||||
nn.BatchNorm2d(num_features=64),
|
||||
nn.ReLU(), # 2
|
||||
# 最大池化层
|
||||
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),
|
||||
# 第一个基本块
|
||||
small_basic_block(ch_in=64, ch_out=128), # *** 4 ***
|
||||
nn.BatchNorm2d(num_features=128),
|
||||
nn.ReLU(), # 6
|
||||
# 第二个池化层
|
||||
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),
|
||||
# 第二个基本块
|
||||
small_basic_block(ch_in=64, ch_out=256), # 8
|
||||
nn.BatchNorm2d(num_features=256),
|
||||
nn.ReLU(), # 10
|
||||
# 第三个基本块
|
||||
small_basic_block(ch_in=256, ch_out=256), # *** 11 ***
|
||||
nn.BatchNorm2d(num_features=256),
|
||||
nn.ReLU(), # 13
|
||||
# 第三个池化层
|
||||
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)), # 14
|
||||
# Dropout层,防止过拟合
|
||||
nn.Dropout(dropout_rate),
|
||||
# 特征提取卷积层
|
||||
nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1), # 16
|
||||
nn.BatchNorm2d(num_features=256),
|
||||
nn.ReLU(), # 18
|
||||
# 第二个Dropout层
|
||||
nn.Dropout(dropout_rate),
|
||||
# 分类卷积层
|
||||
nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # 20
|
||||
nn.BatchNorm2d(num_features=class_num),
|
||||
nn.ReLU(), # 22
|
||||
)
|
||||
|
||||
# 定义容器层,用于融合全局上下文信息
|
||||
self.container = nn.Sequential(
|
||||
nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1,1), stride=(1,1)),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# 保存中间特征
|
||||
keep_features = list()
|
||||
for i, layer in enumerate(self.backbone.children()):
|
||||
x = layer(x)
|
||||
# 保存特定层的输出特征
|
||||
if i in [2, 6, 13, 22]: # [2, 4, 8, 11, 22]
|
||||
keep_features.append(x)
|
||||
|
||||
# 处理全局上下文信息
|
||||
global_context = list()
|
||||
for i, f in enumerate(keep_features):
|
||||
# 对不同层的特征进行不同尺度的平均池化
|
||||
if i in [0, 1]:
|
||||
f = nn.AvgPool2d(kernel_size=5, stride=5)(f)
|
||||
if i in [2]:
|
||||
f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)
|
||||
# 对特征进行归一化处理
|
||||
f_pow = torch.pow(f, 2)
|
||||
f_mean = torch.mean(f_pow)
|
||||
f = torch.div(f, f_mean)
|
||||
global_context.append(f)
|
||||
|
||||
# 拼接全局上下文特征
|
||||
x = torch.cat(global_context, 1)
|
||||
# 通过容器层处理
|
||||
x = self.container(x)
|
||||
# 对序列维度进行平均,得到最终输出
|
||||
logits = torch.mean(x, dim=2)
|
||||
|
||||
return logits
|
||||
|
||||
# LPRNet推理类
|
||||
class LPRNetInference:
|
||||
def __init__(self, model_path=None, img_size=[94, 24], lpr_max_len=8, dropout_rate=0.5):
|
||||
"""
|
||||
@ -109,6 +142,7 @@ class LPRNetInference:
|
||||
"""
|
||||
self.img_size = img_size
|
||||
self.lpr_max_len = lpr_max_len
|
||||
# 检测是否有可用的CUDA设备
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
# 设置默认模型路径
|
||||
@ -130,6 +164,7 @@ class LPRNetInference:
|
||||
else:
|
||||
print(f"Warning: 模型文件不存在或未指定: {model_path}. 使用随机权重.")
|
||||
|
||||
# 将模型移动到指定设备并设置为评估模式
|
||||
self.model.to(self.device)
|
||||
self.model.eval()
|
||||
|
||||
@ -164,9 +199,11 @@ class LPRNetInference:
|
||||
image_array = cv2.resize(image_array, tuple(self.img_size))
|
||||
|
||||
# 使用与训练时相同的预处理方式
|
||||
# 归一化处理:减去127.5并乘以0.0078125,将像素值从[0,255]映射到[-1,1]
|
||||
image_array = image_array.astype('float32')
|
||||
image_array -= 127.5
|
||||
image_array *= 0.0078125
|
||||
# 调整维度顺序从HWC到CHW
|
||||
image_array = np.transpose(image_array, (2, 0, 1)) # HWC -> CHW
|
||||
|
||||
# 转换为tensor并添加batch维度
|
||||
@ -186,7 +223,7 @@ class LPRNetInference:
|
||||
prebs = logits.cpu().detach().numpy()
|
||||
preb = prebs[0, :, :] # 取第一个batch [num_classes, sequence_length]
|
||||
|
||||
# 贪婪解码:对每个时间步选择最大概率的字符
|
||||
# 贪婪解码: 对每个时间步选择最大概率的字符
|
||||
preb_label = []
|
||||
for j in range(preb.shape[1]): # 遍历每个时间步
|
||||
preb_label.append(np.argmax(preb[:, j], axis=0))
|
||||
@ -248,7 +285,7 @@ class LPRNetInference:
|
||||
print(f"预测图像失败: {e}")
|
||||
return None, 0.0
|
||||
|
||||
# 全局变量
|
||||
# 全局变量,用于存储模型实例
|
||||
lpr_model = None
|
||||
|
||||
def LPRNinitialize_model():
|
||||
@ -295,6 +332,13 @@ def LPRNmodel_predict(image_array):
|
||||
return ['待', '识', '别', '0', '0', '0', '0', '0']
|
||||
|
||||
try:
|
||||
# 使用OpenCV调整图像大小到模型要求的尺寸
|
||||
image_array = cv2.resize(image_array, (94, 24))
|
||||
print(f"666999图片尺寸: {image_array.shape}")
|
||||
|
||||
# 显示修正后的图像
|
||||
cv2.imshow('Resized License Plate Image (94x24)', image_array)
|
||||
cv2.waitKey(1) # 非阻塞显示,允许程序继续执行
|
||||
# 预测车牌号
|
||||
predicted_text, confidence = lpr_model.predict(image_array)
|
||||
|
||||
|
@ -5,6 +5,18 @@ import cv2
|
||||
class OCRProcessor:
|
||||
def __init__(self):
|
||||
self.model = TextRecognition(model_name="PP-OCRv5_server_rec")
|
||||
# 定义允许的字符集合(不包含空白字符)
|
||||
self.allowed_chars = [
|
||||
# 中文省份简称
|
||||
'京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
|
||||
'苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
|
||||
'桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新',
|
||||
# 字母 A-Z
|
||||
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
|
||||
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
|
||||
# 数字 0-9
|
||||
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'
|
||||
]
|
||||
print("OCR模型初始化完成(占位)")
|
||||
|
||||
def predict(self, image_array):
|
||||
@ -15,6 +27,14 @@ class OCRProcessor:
|
||||
placeholder_result = results.split(',')
|
||||
return placeholder_result
|
||||
|
||||
def filter_allowed_chars(self, text):
|
||||
"""只保留允许的字符"""
|
||||
filtered_text = ""
|
||||
for char in text:
|
||||
if char in self.allowed_chars:
|
||||
filtered_text += char
|
||||
return filtered_text
|
||||
|
||||
# 保留原有函数接口
|
||||
_processor = OCRProcessor()
|
||||
|
||||
@ -42,8 +62,12 @@ def LPRNmodel_predict(image_array):
|
||||
else:
|
||||
result_str = str(raw_result)
|
||||
|
||||
# 过滤掉'·'字符
|
||||
# 过滤掉'·'和'-'字符
|
||||
filtered_str = result_str.replace('·', '')
|
||||
filtered_str = filtered_str.replace('-', '')
|
||||
|
||||
# 只保留允许的字符
|
||||
filtered_str = _processor.filter_allowed_chars(filtered_str)
|
||||
|
||||
# 转换为字符列表
|
||||
char_list = list(filtered_str)
|
||||
|
BIN
lightCRNN_part/best_model.pth
Normal file
BIN
lightCRNN_part/best_model.pth
Normal file
Binary file not shown.
539
main.py
539
main.py
@ -1,25 +1,22 @@
|
||||
import sys
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PyQt5.QtWidgets import (
|
||||
QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout,
|
||||
QLabel, QPushButton, QScrollArea, QFrame, QSizePolicy
|
||||
)
|
||||
from PyQt5.QtWidgets import QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout, QLabel, QPushButton, \
|
||||
QFileDialog, QFrame, QScrollArea, QComboBox
|
||||
from PyQt5.QtCore import QTimer, Qt, pyqtSignal, QThread
|
||||
from PyQt5.QtGui import QImage, QPixmap, QFont, QPainter, QPen, QColor
|
||||
import os
|
||||
from yolopart.detector import LicensePlateYOLO
|
||||
|
||||
#选择使用哪个模块
|
||||
from LPRNET_part.lpr_interface import LPRNmodel_predict
|
||||
from LPRNET_part.lpr_interface import LPRNinitialize_model
|
||||
|
||||
# from LPRNET_part.lpr_interface import LPRNmodel_predict
|
||||
# from LPRNET_part.lpr_interface import LPRNinitialize_model
|
||||
#使用OCR
|
||||
#from OCR_part.ocr_interface import LPRNmodel_predict
|
||||
#from OCR_part.ocr_interface import LPRNinitialize_model
|
||||
# from OCR_part.ocr_interface import LPRNmodel_predict
|
||||
# from OCR_part.ocr_interface import LPRNinitialize_model
|
||||
# 使用CRNN
|
||||
#from CRNN_part.crnn_interface import LPRNmodel_predict
|
||||
#from CRNN_part.crnn_interface import LPRNinitialize_model
|
||||
# from CRNN_part.crnn_interface import LPRNmodel_predict
|
||||
# from CRNN_part.crnn_interface import LPRNinitialize_model
|
||||
|
||||
class CameraThread(QThread):
|
||||
"""摄像头线程类"""
|
||||
@ -56,6 +53,60 @@ class CameraThread(QThread):
|
||||
self.frame_ready.emit(frame)
|
||||
self.msleep(30) # 约30fps
|
||||
|
||||
class VideoThread(QThread):
|
||||
"""视频处理线程类"""
|
||||
frame_ready = pyqtSignal(np.ndarray)
|
||||
video_finished = pyqtSignal()
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.video_path = None
|
||||
self.cap = None
|
||||
self.running = False
|
||||
self.paused = False
|
||||
|
||||
def load_video(self, video_path):
|
||||
"""加载视频文件"""
|
||||
self.video_path = video_path
|
||||
self.cap = cv2.VideoCapture(video_path)
|
||||
return self.cap.isOpened()
|
||||
|
||||
def start_video(self):
|
||||
"""开始播放视频"""
|
||||
if self.cap and self.cap.isOpened():
|
||||
self.running = True
|
||||
self.paused = False
|
||||
self.start()
|
||||
return True
|
||||
return False
|
||||
|
||||
def pause_video(self):
|
||||
"""暂停/继续视频"""
|
||||
self.paused = not self.paused
|
||||
return self.paused
|
||||
|
||||
def stop_video(self):
|
||||
"""停止视频"""
|
||||
self.running = False
|
||||
if self.cap:
|
||||
self.cap.release()
|
||||
self.quit()
|
||||
self.wait()
|
||||
|
||||
def run(self):
|
||||
"""线程运行函数"""
|
||||
while self.running:
|
||||
if not self.paused and self.cap and self.cap.isOpened():
|
||||
ret, frame = self.cap.read()
|
||||
if ret:
|
||||
self.frame_ready.emit(frame)
|
||||
else:
|
||||
# 视频播放结束
|
||||
self.video_finished.emit()
|
||||
self.running = False
|
||||
break
|
||||
self.msleep(30) # 约30fps
|
||||
|
||||
class LicensePlateWidget(QWidget):
|
||||
"""单个车牌结果显示组件"""
|
||||
|
||||
@ -162,15 +213,21 @@ class MainWindow(QMainWindow):
|
||||
super().__init__()
|
||||
self.detector = None
|
||||
self.camera_thread = None
|
||||
self.video_thread = None
|
||||
self.current_frame = None
|
||||
self.detections = []
|
||||
self.current_mode = "camera" # 当前模式:camera, video, image
|
||||
self.is_processing = False # 标志位,表示是否正在处理识别任务
|
||||
self.last_plate_results = [] # 存储上一次的车牌识别结果
|
||||
self.current_recognition_method = "CRNN" # 当前识别方法
|
||||
|
||||
self.init_ui()
|
||||
self.init_detector()
|
||||
self.init_camera()
|
||||
self.init_video()
|
||||
|
||||
# 初始化OCR/CRNN模型(函数名改成一样的了,所以不要修改这里了,想用哪个模块直接导入)
|
||||
LPRNinitialize_model()
|
||||
# 初始化默认识别方法(CRNN)的模型
|
||||
self.change_recognition_method(self.current_recognition_method)
|
||||
|
||||
|
||||
def init_ui(self):
|
||||
@ -197,7 +254,7 @@ class MainWindow(QMainWindow):
|
||||
self.camera_label.setStyleSheet("QLabel { background-color: black; border: 1px solid #ccc; }")
|
||||
self.camera_label.setAlignment(Qt.AlignCenter)
|
||||
self.camera_label.setText("摄像头未启动")
|
||||
self.camera_label.setScaledContents(True)
|
||||
self.camera_label.setScaledContents(False)
|
||||
|
||||
# 控制按钮
|
||||
button_layout = QHBoxLayout()
|
||||
@ -207,8 +264,26 @@ class MainWindow(QMainWindow):
|
||||
self.stop_button.clicked.connect(self.stop_camera)
|
||||
self.stop_button.setEnabled(False)
|
||||
|
||||
# 视频控制按钮
|
||||
self.open_video_button = QPushButton("打开视频")
|
||||
self.stop_video_button = QPushButton("停止视频")
|
||||
self.pause_video_button = QPushButton("暂停视频")
|
||||
self.open_video_button.clicked.connect(self.open_video_file)
|
||||
self.stop_video_button.clicked.connect(self.stop_video)
|
||||
self.pause_video_button.clicked.connect(self.pause_video)
|
||||
self.stop_video_button.setEnabled(False)
|
||||
self.pause_video_button.setEnabled(False)
|
||||
|
||||
# 图片控制按钮
|
||||
self.open_image_button = QPushButton("打开图片")
|
||||
self.open_image_button.clicked.connect(self.open_image_file)
|
||||
|
||||
button_layout.addWidget(self.start_button)
|
||||
button_layout.addWidget(self.stop_button)
|
||||
button_layout.addWidget(self.open_video_button)
|
||||
button_layout.addWidget(self.stop_video_button)
|
||||
button_layout.addWidget(self.pause_video_button)
|
||||
button_layout.addWidget(self.open_image_button)
|
||||
button_layout.addStretch()
|
||||
|
||||
left_layout.addWidget(self.camera_label)
|
||||
@ -227,6 +302,20 @@ class MainWindow(QMainWindow):
|
||||
title_label.setFont(QFont("Arial", 16, QFont.Bold))
|
||||
title_label.setStyleSheet("QLabel { color: #333; padding: 10px; }")
|
||||
|
||||
# 识别方法选择
|
||||
method_layout = QHBoxLayout()
|
||||
method_label = QLabel("识别方法:")
|
||||
method_label.setFont(QFont("Arial", 10))
|
||||
|
||||
self.method_combo = QComboBox()
|
||||
self.method_combo.addItems(["CRNN", "LPRNET", "OCR"])
|
||||
self.method_combo.setCurrentText("CRNN") # 默认选择CRNN
|
||||
self.method_combo.currentTextChanged.connect(self.change_recognition_method)
|
||||
|
||||
method_layout.addWidget(method_label)
|
||||
method_layout.addWidget(self.method_combo)
|
||||
method_layout.addStretch()
|
||||
|
||||
# 车牌数量显示
|
||||
self.count_label = QLabel("识别到的车牌数量: 0")
|
||||
self.count_label.setAlignment(Qt.AlignCenter)
|
||||
@ -253,9 +342,17 @@ class MainWindow(QMainWindow):
|
||||
|
||||
scroll_area.setWidget(self.results_widget)
|
||||
|
||||
# 当前识别任务显示
|
||||
self.current_method_label = QLabel("当前识别方法: CRNN")
|
||||
self.current_method_label.setAlignment(Qt.AlignRight)
|
||||
self.current_method_label.setFont(QFont("Arial", 9))
|
||||
self.current_method_label.setStyleSheet("QLabel { color: #666; padding: 5px; }")
|
||||
|
||||
right_layout.addWidget(title_label)
|
||||
right_layout.addLayout(method_layout)
|
||||
right_layout.addWidget(self.count_label)
|
||||
right_layout.addWidget(scroll_area)
|
||||
right_layout.addWidget(self.current_method_label)
|
||||
|
||||
# 添加到主布局
|
||||
main_layout.addWidget(left_frame, 2)
|
||||
@ -296,6 +393,12 @@ class MainWindow(QMainWindow):
|
||||
self.camera_thread = CameraThread()
|
||||
self.camera_thread.frame_ready.connect(self.process_frame)
|
||||
|
||||
def init_video(self):
|
||||
"""初始化视频线程"""
|
||||
self.video_thread = VideoThread()
|
||||
self.video_thread.frame_ready.connect(self.process_frame)
|
||||
self.video_thread.video_finished.connect(self.on_video_finished)
|
||||
|
||||
def start_camera(self):
|
||||
"""启动摄像头"""
|
||||
if self.camera_thread.start_camera():
|
||||
@ -311,23 +414,167 @@ class MainWindow(QMainWindow):
|
||||
self.start_button.setEnabled(True)
|
||||
self.stop_button.setEnabled(False)
|
||||
self.camera_label.setText("摄像头已停止")
|
||||
self.camera_label.clear()
|
||||
# 只在摄像头模式下清除标签内容
|
||||
if self.current_mode == "camera":
|
||||
self.camera_label.clear()
|
||||
|
||||
def on_video_finished(self):
|
||||
"""视频播放结束时的处理"""
|
||||
self.video_thread.stop_video()
|
||||
self.open_video_button.setEnabled(True)
|
||||
self.stop_video_button.setEnabled(False)
|
||||
self.pause_video_button.setEnabled(False)
|
||||
self.camera_label.setText("视频播放结束")
|
||||
self.current_mode = "camera"
|
||||
|
||||
def open_video_file(self):
|
||||
"""打开视频文件"""
|
||||
# 停止当前模式
|
||||
if self.current_mode == "camera" and self.camera_thread and self.camera_thread.running:
|
||||
self.stop_camera()
|
||||
elif self.current_mode == "video" and self.video_thread and self.video_thread.running:
|
||||
self.stop_video()
|
||||
|
||||
# 选择视频文件
|
||||
video_path, _ = QFileDialog.getOpenFileName(self, "选择视频文件", "", "视频文件 (*.mp4 *.avi *.mov *.mkv)")
|
||||
|
||||
if video_path:
|
||||
if self.video_thread.load_video(video_path):
|
||||
self.current_mode = "video"
|
||||
self.start_video()
|
||||
self.camera_label.setText(f"正在播放视频: {os.path.basename(video_path)}")
|
||||
else:
|
||||
self.camera_label.setText("视频加载失败")
|
||||
|
||||
def start_video(self):
|
||||
"""开始播放视频"""
|
||||
if self.video_thread.start_video():
|
||||
self.open_video_button.setEnabled(False)
|
||||
self.stop_video_button.setEnabled(True)
|
||||
self.pause_video_button.setEnabled(True)
|
||||
self.pause_video_button.setText("暂停")
|
||||
else:
|
||||
self.camera_label.setText("视频播放失败")
|
||||
|
||||
def pause_video(self):
|
||||
"""暂停/继续视频"""
|
||||
if self.video_thread.pause_video():
|
||||
self.pause_video_button.setText("继续")
|
||||
else:
|
||||
self.pause_video_button.setText("暂停")
|
||||
|
||||
def stop_video(self):
|
||||
"""停止视频"""
|
||||
self.video_thread.stop_video()
|
||||
self.open_video_button.setEnabled(True)
|
||||
self.stop_video_button.setEnabled(False)
|
||||
self.pause_video_button.setEnabled(False)
|
||||
self.camera_label.setText("视频已停止")
|
||||
# 只在视频模式下清除标签内容
|
||||
if self.current_mode == "video":
|
||||
self.camera_label.clear()
|
||||
self.current_mode = "camera"
|
||||
|
||||
def open_image_file(self):
|
||||
"""打开图片文件"""
|
||||
# 停止当前模式
|
||||
if self.current_mode == "camera" and self.camera_thread and self.camera_thread.running:
|
||||
self.stop_camera()
|
||||
elif self.current_mode == "video" and self.video_thread and self.video_thread.running:
|
||||
self.stop_video()
|
||||
|
||||
# 选择图片文件
|
||||
image_path, _ = QFileDialog.getOpenFileName(self, "选择图片文件", "", "图片文件 (*.jpg *.jpeg *.png *.bmp)")
|
||||
|
||||
if image_path:
|
||||
self.current_mode = "image"
|
||||
try:
|
||||
# 读取图片 - 方法1: 使用cv2.imdecode处理中文路径
|
||||
image = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
|
||||
|
||||
# 如果方法1失败,尝试方法2: 直接使用cv2.imread
|
||||
if image is None:
|
||||
image = cv2.imread(image_path)
|
||||
|
||||
if image is not None:
|
||||
print(f"成功加载图片: {image_path}, 尺寸: {image.shape}")
|
||||
self.process_image(image)
|
||||
# 不在这里设置文本,避免覆盖图片
|
||||
# self.camera_label.setText(f"正在显示图片: {os.path.basename(image_path)}")
|
||||
else:
|
||||
print(f"图片加载失败: {image_path}")
|
||||
self.camera_label.setText("图片加载失败")
|
||||
except Exception as e:
|
||||
print(f"图片处理异常: {str(e)}")
|
||||
self.camera_label.setText(f"图片处理错误: {str(e)}")
|
||||
|
||||
def process_image(self, image):
|
||||
"""处理图片"""
|
||||
try:
|
||||
print(f"开始处理图片,图片尺寸: {image.shape}")
|
||||
self.current_frame = image.copy()
|
||||
|
||||
# 进行车牌检测
|
||||
print("正在进行车牌检测...")
|
||||
self.detections = self.detector.detect_license_plates(image)
|
||||
print(f"检测到 {len(self.detections)} 个车牌")
|
||||
|
||||
# 在图像上绘制检测结果
|
||||
print("正在绘制检测结果...")
|
||||
display_frame = self.draw_detections(image.copy())
|
||||
|
||||
# 转换为Qt格式并显示
|
||||
print("正在显示图片...")
|
||||
self.display_frame(display_frame)
|
||||
|
||||
# 更新右侧结果显示
|
||||
print("正在更新结果显示...")
|
||||
self.update_results_display()
|
||||
print("图片处理完成")
|
||||
except Exception as e:
|
||||
print(f"图片处理过程中出错: {str(e)}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
def process_frame(self, frame):
|
||||
"""处理摄像头帧"""
|
||||
self.current_frame = frame.copy()
|
||||
|
||||
# 进行车牌检测
|
||||
self.detections = self.detector.detect_license_plates(frame)
|
||||
# 先显示原始帧,保证视频流畅播放
|
||||
self.display_frame(frame)
|
||||
|
||||
# 在图像上绘制检测结果
|
||||
display_frame = self.draw_detections(frame.copy())
|
||||
# 如果当前没有在处理识别任务,则开始新的识别任务
|
||||
if not self.is_processing:
|
||||
self.is_processing = True
|
||||
# 异步进行车牌检测和识别
|
||||
QTimer.singleShot(0, self.async_detect_and_update)
|
||||
|
||||
# 转换为Qt格式并显示
|
||||
self.display_frame(display_frame)
|
||||
def async_detect_and_update(self):
|
||||
"""异步进行车牌检测和识别"""
|
||||
if self.current_frame is None:
|
||||
self.is_processing = False # 重置标志位
|
||||
return
|
||||
|
||||
# 更新右侧结果显示
|
||||
self.update_results_display()
|
||||
try:
|
||||
# 进行车牌检测
|
||||
self.detections = self.detector.detect_license_plates(self.current_frame)
|
||||
|
||||
# 在图像上绘制检测结果
|
||||
display_frame = self.draw_detections(self.current_frame.copy())
|
||||
|
||||
# 更新显示帧(显示带检测结果的帧)
|
||||
# 无论是摄像头模式还是视频模式,都显示检测框
|
||||
self.display_frame(display_frame)
|
||||
|
||||
# 更新右侧结果显示
|
||||
self.update_results_display()
|
||||
except Exception as e:
|
||||
print(f"异步检测和更新失败: {str(e)}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
finally:
|
||||
# 无论成功或失败,都要重置标志位
|
||||
self.is_processing = False
|
||||
|
||||
def draw_detections(self, frame):
|
||||
"""在图像上绘制检测结果"""
|
||||
@ -335,14 +582,96 @@ class MainWindow(QMainWindow):
|
||||
|
||||
def display_frame(self, frame):
|
||||
"""显示帧到界面"""
|
||||
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
h, w, ch = rgb_frame.shape
|
||||
bytes_per_line = ch * w
|
||||
qt_image = QImage(rgb_frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
|
||||
try:
|
||||
print(f"开始显示帧,帧尺寸: {frame.shape}")
|
||||
|
||||
pixmap = QPixmap.fromImage(qt_image)
|
||||
scaled_pixmap = pixmap.scaled(self.camera_label.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation)
|
||||
self.camera_label.setPixmap(scaled_pixmap)
|
||||
# 方法1: 标准方法
|
||||
try:
|
||||
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
h, w, ch = rgb_frame.shape
|
||||
bytes_per_line = ch * w
|
||||
qt_image = QImage(rgb_frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
|
||||
|
||||
print(f"方法1: 创建QImage,尺寸: {qt_image.width()}x{qt_image.height()}")
|
||||
if qt_image.isNull():
|
||||
print("方法1: QImage为空,尝试方法2")
|
||||
raise Exception("QImage为空")
|
||||
|
||||
pixmap = QPixmap.fromImage(qt_image)
|
||||
if pixmap.isNull():
|
||||
print("方法1: QPixmap为空,尝试方法2")
|
||||
raise Exception("QPixmap为空")
|
||||
|
||||
# 手动缩放图片以适应标签大小,保持宽高比
|
||||
scaled_pixmap = pixmap.scaled(self.camera_label.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation)
|
||||
self.camera_label.setPixmap(scaled_pixmap)
|
||||
print("方法1: 帧显示完成")
|
||||
return
|
||||
except Exception as e1:
|
||||
print(f"方法1失败: {str(e1)}")
|
||||
|
||||
# 方法2: 使用imencode和imdecode
|
||||
try:
|
||||
print("尝试方法2: 使用imencode和imdecode")
|
||||
_, buffer = cv2.imencode('.jpg', frame)
|
||||
rgb_frame = cv2.imdecode(buffer, cv2.IMREAD_COLOR)
|
||||
rgb_frame = cv2.cvtColor(rgb_frame, cv2.COLOR_BGR2RGB)
|
||||
h, w, ch = rgb_frame.shape
|
||||
bytes_per_line = ch * w
|
||||
qt_image = QImage(rgb_frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
|
||||
|
||||
print(f"方法2: 创建QImage,尺寸: {qt_image.width()}x{qt_image.height()}")
|
||||
if qt_image.isNull():
|
||||
print("方法2: QImage为空")
|
||||
raise Exception("QImage为空")
|
||||
|
||||
pixmap = QPixmap.fromImage(qt_image)
|
||||
if pixmap.isNull():
|
||||
print("方法2: QPixmap为空")
|
||||
raise Exception("QPixmap为空")
|
||||
|
||||
# 手动缩放图片以适应标签大小,保持宽高比
|
||||
scaled_pixmap = pixmap.scaled(self.camera_label.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation)
|
||||
self.camera_label.setPixmap(scaled_pixmap)
|
||||
print("方法2: 帧显示完成")
|
||||
return
|
||||
except Exception as e2:
|
||||
print(f"方法2失败: {str(e2)}")
|
||||
|
||||
# 方法3: 直接使用QImage的构造函数
|
||||
try:
|
||||
print("尝试方法3: 直接使用QImage的构造函数")
|
||||
height, width, channel = frame.shape
|
||||
bytes_per_line = 3 * width
|
||||
q_image = QImage(frame.data, width, height, bytes_per_line, QImage.Format_BGR888)
|
||||
|
||||
print(f"方法3: 创建QImage,尺寸: {q_image.width()}x{q_image.height()}")
|
||||
if q_image.isNull():
|
||||
print("方法3: QImage为空")
|
||||
raise Exception("QImage为空")
|
||||
|
||||
pixmap = QPixmap.fromImage(q_image)
|
||||
if pixmap.isNull():
|
||||
print("方法3: QPixmap为空")
|
||||
raise Exception("QPixmap为空")
|
||||
|
||||
# 手动缩放图片以适应标签大小,保持宽高比
|
||||
scaled_pixmap = pixmap.scaled(self.camera_label.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation)
|
||||
self.camera_label.setPixmap(scaled_pixmap)
|
||||
print("方法3: 帧显示完成")
|
||||
return
|
||||
except Exception as e3:
|
||||
print(f"方法3失败: {str(e3)}")
|
||||
|
||||
# 所有方法都失败
|
||||
print("所有显示方法都失败")
|
||||
self.camera_label.setText("图片显示失败")
|
||||
|
||||
except Exception as e:
|
||||
print(f"显示帧过程中出错: {str(e)}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
self.camera_label.setText(f"显示错误: {str(e)}")
|
||||
|
||||
def update_results_display(self):
|
||||
"""更新右侧结果显示"""
|
||||
@ -350,13 +679,8 @@ class MainWindow(QMainWindow):
|
||||
count = len(self.detections)
|
||||
self.count_label.setText(f"识别到的车牌数量: {count}")
|
||||
|
||||
# 清除之前的结果
|
||||
for i in reversed(range(self.results_layout.count())):
|
||||
child = self.results_layout.itemAt(i).widget()
|
||||
if child:
|
||||
child.setParent(None)
|
||||
|
||||
# 添加新的结果
|
||||
# 准备新的车牌结果列表
|
||||
new_plate_results = []
|
||||
for i, detection in enumerate(self.detections):
|
||||
# 矫正车牌图像
|
||||
corrected_image = self.correct_license_plate(detection)
|
||||
@ -364,15 +688,53 @@ class MainWindow(QMainWindow):
|
||||
# 获取车牌号,传入车牌类型信息
|
||||
plate_number = self.recognize_plate_number(corrected_image, detection['class_name'])
|
||||
|
||||
# 创建车牌显示组件
|
||||
plate_widget = LicensePlateWidget(
|
||||
i + 1,
|
||||
detection['class_name'],
|
||||
corrected_image,
|
||||
plate_number
|
||||
)
|
||||
# 添加到新结果列表
|
||||
new_plate_results.append({
|
||||
'id': i + 1,
|
||||
'class_name': detection['class_name'],
|
||||
'corrected_image': corrected_image,
|
||||
'plate_number': plate_number
|
||||
})
|
||||
|
||||
self.results_layout.addWidget(plate_widget)
|
||||
# 比较新旧结果是否相同
|
||||
results_changed = False
|
||||
if len(self.last_plate_results) != len(new_plate_results):
|
||||
results_changed = True
|
||||
else:
|
||||
for i in range(len(new_plate_results)):
|
||||
if i >= len(self.last_plate_results):
|
||||
results_changed = True
|
||||
break
|
||||
|
||||
last_result = self.last_plate_results[i]
|
||||
new_result = new_plate_results[i]
|
||||
|
||||
# 比较车牌类型和车牌号
|
||||
if (last_result['class_name'] != new_result['class_name'] or
|
||||
last_result['plate_number'] != new_result['plate_number']):
|
||||
results_changed = True
|
||||
break
|
||||
|
||||
# 只有当结果发生变化时才更新显示
|
||||
if results_changed:
|
||||
# 清除之前的结果
|
||||
for i in reversed(range(self.results_layout.count())):
|
||||
child = self.results_layout.itemAt(i).widget()
|
||||
if child:
|
||||
child.setParent(None)
|
||||
|
||||
# 添加新的结果
|
||||
for result in new_plate_results:
|
||||
plate_widget = LicensePlateWidget(
|
||||
result['id'],
|
||||
result['class_name'],
|
||||
result['corrected_image'],
|
||||
result['plate_number']
|
||||
)
|
||||
self.results_layout.addWidget(plate_widget)
|
||||
|
||||
# 更新存储的上一次结果
|
||||
self.last_plate_results = new_plate_results
|
||||
|
||||
def correct_license_plate(self, detection):
|
||||
"""矫正车牌图像"""
|
||||
@ -390,40 +752,69 @@ class MainWindow(QMainWindow):
|
||||
)
|
||||
|
||||
def recognize_plate_number(self, corrected_image, class_name):
|
||||
"""识别车牌号"""
|
||||
if corrected_image is None:
|
||||
return "识别失败"
|
||||
"""识别车牌号"""
|
||||
if corrected_image is None:
|
||||
return "识别失败"
|
||||
|
||||
try:
|
||||
# 预测函数(来自模块)
|
||||
# 函数名改成一样的了,所以不要修改这里了,想用哪个模块直接导入
|
||||
result = LPRNmodel_predict(corrected_image)
|
||||
try:
|
||||
# 根据当前选择的识别方法调用相应的函数
|
||||
if self.current_recognition_method == "CRNN":
|
||||
from CRNN_part.crnn_interface import LPRNmodel_predict
|
||||
elif self.current_recognition_method == "LPRNET":
|
||||
from lightCRNN_part.lightcrnn_interface import LPRNmodel_predict
|
||||
elif self.current_recognition_method == "OCR":
|
||||
from OCR_part.ocr_interface import LPRNmodel_predict
|
||||
|
||||
# 将字符列表转换为字符串,支持8位车牌号
|
||||
if isinstance(result, list) and len(result) >= 7:
|
||||
# 根据车牌类型决定显示位数
|
||||
if class_name == '绿牌' and len(result) >= 8:
|
||||
# 绿牌显示8位,过滤掉空字符占位符
|
||||
plate_chars = [char for char in result[:8] if char != '']
|
||||
# 如果过滤后确实有8位,显示8位;否则显示7位
|
||||
if len(plate_chars) == 8:
|
||||
return ''.join(plate_chars)
|
||||
else:
|
||||
return ''.join(plate_chars[:7])
|
||||
else:
|
||||
# 蓝牌或其他类型显示前7位,过滤掉空字符
|
||||
plate_chars = [char for char in result[:7] if char != '']
|
||||
return ''.join(plate_chars)
|
||||
else:
|
||||
return "识别失败"
|
||||
except Exception as e:
|
||||
print(f"车牌号识别失败: {e}")
|
||||
return "识别失败"
|
||||
# 预测函数(来自模块)
|
||||
result = LPRNmodel_predict(corrected_image)
|
||||
|
||||
# 将字符列表转换为字符串,支持8位车牌号
|
||||
if isinstance(result, list) and len(result) >= 7:
|
||||
# 根据车牌类型决定显示位数
|
||||
if class_name == '绿牌' and len(result) >= 8:
|
||||
# 绿牌显示8位,过滤掉空字符占位符
|
||||
plate_chars = [char for char in result[:8] if char != '']
|
||||
# 如果过滤后确实有8位,显示8位;否则显示7位
|
||||
if len(plate_chars) == 8:
|
||||
return ''.join(plate_chars)
|
||||
else:
|
||||
return ''.join(plate_chars[:7])
|
||||
else:
|
||||
# 蓝牌或其他类型显示前7位,过滤掉空字符
|
||||
plate_chars = [char for char in result[:7] if char != '']
|
||||
return ''.join(plate_chars)
|
||||
else:
|
||||
return "识别失败"
|
||||
except Exception as e:
|
||||
print(f"车牌号识别失败: {e}")
|
||||
return "识别失败"
|
||||
|
||||
def change_recognition_method(self, method):
|
||||
"""切换识别方法"""
|
||||
self.current_recognition_method = method
|
||||
self.current_method_label.setText(f"当前识别方法: {method}")
|
||||
|
||||
# 初始化对应的模型
|
||||
if method == "CRNN":
|
||||
from CRNN_part.crnn_interface import LPRNinitialize_model
|
||||
LPRNinitialize_model()
|
||||
elif method == "LPRNET":
|
||||
from lightCRNN_part.lightcrnn_interface import LPRNinitialize_model
|
||||
LPRNinitialize_model()
|
||||
elif method == "OCR":
|
||||
from OCR_part.ocr_interface import LPRNinitialize_model
|
||||
LPRNinitialize_model()
|
||||
|
||||
# 如果当前有显示的帧,重新处理以更新识别结果
|
||||
if self.current_frame is not None:
|
||||
self.process_frame(self.current_frame)
|
||||
|
||||
def closeEvent(self, event):
|
||||
"""窗口关闭事件"""
|
||||
if self.camera_thread:
|
||||
if self.camera_thread and self.camera_thread.running:
|
||||
self.camera_thread.stop_camera()
|
||||
if self.video_thread and self.video_thread.running:
|
||||
self.video_thread.stop_video()
|
||||
event.accept()
|
||||
|
||||
def main():
|
||||
|
100
test_lpr_real_images.py
Normal file
100
test_lpr_real_images.py
Normal file
@ -0,0 +1,100 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
LPRNet接口真实图片测试脚本
|
||||
测试LPRNET_part目录下的真实车牌图片
|
||||
"""
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import os
|
||||
from LPRNET_part.lpr_interface import LPRNinitialize_model, LPRNmodel_predict
|
||||
|
||||
def test_real_images():
|
||||
"""
|
||||
测试LPRNET_part目录下的真实车牌图片
|
||||
"""
|
||||
print("=== LPRNet真实图片测试 ===")
|
||||
|
||||
# 初始化模型
|
||||
print("1. 初始化LPRNet模型...")
|
||||
success = LPRNinitialize_model()
|
||||
if not success:
|
||||
print("模型初始化失败!")
|
||||
return
|
||||
|
||||
# 获取LPRNET_part目录下的图片文件
|
||||
lprnet_dir = "LPRNET_part"
|
||||
image_files = []
|
||||
|
||||
if os.path.exists(lprnet_dir):
|
||||
for file in os.listdir(lprnet_dir):
|
||||
if file.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp')):
|
||||
image_files.append(os.path.join(lprnet_dir, file))
|
||||
|
||||
if not image_files:
|
||||
print("未找到图片文件!")
|
||||
return
|
||||
|
||||
print(f"2. 找到 {len(image_files)} 个图片文件")
|
||||
|
||||
# 测试每个图片
|
||||
for i, image_path in enumerate(image_files, 1):
|
||||
print(f"\n--- 测试图片 {i}: {os.path.basename(image_path)} ---")
|
||||
|
||||
try:
|
||||
# 使用支持中文路径的方式读取图片
|
||||
image = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
|
||||
|
||||
if image is None:
|
||||
print(f"无法读取图片: {image_path}")
|
||||
continue
|
||||
|
||||
print(f"图片尺寸: {image.shape}")
|
||||
|
||||
# 进行预测
|
||||
result = LPRNmodel_predict(image)
|
||||
print(f"识别结果: {result}")
|
||||
print(f"识别车牌号: {''.join(result)}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"处理图片 {image_path} 时出错: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
print("\n=== 测试完成 ===")
|
||||
|
||||
def test_image_loading():
|
||||
"""
|
||||
测试图片加载方式
|
||||
"""
|
||||
print("\n=== 图片加载测试 ===")
|
||||
|
||||
lprnet_dir = "LPRNET_part"
|
||||
|
||||
if os.path.exists(lprnet_dir):
|
||||
for file in os.listdir(lprnet_dir):
|
||||
if file.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp')):
|
||||
image_path = os.path.join(lprnet_dir, file)
|
||||
print(f"\n测试文件: {file}")
|
||||
|
||||
# 方法1: 普通cv2.imread
|
||||
img1 = cv2.imread(image_path)
|
||||
print(f"cv2.imread结果: {img1 is not None}")
|
||||
|
||||
# 方法2: 支持中文路径的方式
|
||||
try:
|
||||
img2 = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
|
||||
# img2 = cv2.resize(img2,(128,48))
|
||||
print(f"cv2.imdecode结果: {img2 is not None}")
|
||||
if img2 is not None:
|
||||
print(f"图片尺寸: {img2.shape}")
|
||||
except Exception as e:
|
||||
print(f"cv2.imdecode失败: {e}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 首先测试图片加载
|
||||
test_image_loading()
|
||||
|
||||
# 然后测试完整的识别流程
|
||||
test_real_images()
|
Loading…
x
Reference in New Issue
Block a user