diff --git a/.idea/License_plate_recognition.iml b/.idea/License_plate_recognition.iml
index fb56de3..8169cd0 100644
--- a/.idea/License_plate_recognition.iml
+++ b/.idea/License_plate_recognition.iml
@@ -5,8 +5,4 @@
-
-
-
-
\ No newline at end of file
diff --git a/LPRNET_part/1.jpg b/LPRNET_part/1.jpg
new file mode 100644
index 0000000..32ddef3
Binary files /dev/null and b/LPRNET_part/1.jpg differ
diff --git a/LPRNET_part/2.jpg b/LPRNET_part/2.jpg
new file mode 100644
index 0000000..29d94e6
Binary files /dev/null and b/LPRNET_part/2.jpg differ
diff --git a/LPRNET_part/6ce2ec7dbed6cf3c8403abe2683c57e5.jpg b/LPRNET_part/6ce2ec7dbed6cf3c8403abe2683c57e5.jpg
new file mode 100644
index 0000000..3f8a8f8
Binary files /dev/null and b/LPRNET_part/6ce2ec7dbed6cf3c8403abe2683c57e5.jpg differ
diff --git a/LPRNET_part/LPRNet__iteration_74000.pth b/LPRNET_part/LPRNet__iteration_74000.pth
new file mode 100644
index 0000000..037122c
Binary files /dev/null and b/LPRNET_part/LPRNet__iteration_74000.pth differ
diff --git a/LPRNET_part/c11304d10bcd47911e458398d1ea445d.jpg b/LPRNET_part/c11304d10bcd47911e458398d1ea445d.jpg
new file mode 100644
index 0000000..570ae94
Binary files /dev/null and b/LPRNET_part/c11304d10bcd47911e458398d1ea445d.jpg differ
diff --git a/LPRNET_part/c6ab0fbcfb2b6fbe15c5b3eb9806a28b.jpg b/LPRNET_part/c6ab0fbcfb2b6fbe15c5b3eb9806a28b.jpg
new file mode 100644
index 0000000..843a03d
Binary files /dev/null and b/LPRNET_part/c6ab0fbcfb2b6fbe15c5b3eb9806a28b.jpg differ
diff --git a/LPRNET_part/lpr_interface.py b/LPRNET_part/lpr_interface.py
index 2b688ba..0f87201 100644
--- a/LPRNET_part/lpr_interface.py
+++ b/LPRNET_part/lpr_interface.py
@@ -1,3 +1,4 @@
+# 导入必要的库
import torch
import torch.nn as nn
import cv2
@@ -11,6 +12,7 @@ from PIL import Image
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# LPRNet字符集定义(与训练时保持一致)
+# 包含中国省份简称、数字、字母和特殊字符
CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
'苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
'桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新',
@@ -19,84 +21,115 @@ CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z', 'I', 'O', '-']
+# 创建字符到索引的映射字典
CHARS_DICT = {char: i for i, char in enumerate(CHARS)}
-# 简化的LPRNet模型定义
+# 简化的LPRNet模型定义 - 基础卷积块
class small_basic_block(nn.Module):
def __init__(self, ch_in, ch_out):
super(small_basic_block, self).__init__()
+ # 定义一个小的基本卷积块,包含四个卷积层
self.block = nn.Sequential(
+ # 1x1卷积,降低通道数
nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),
nn.ReLU(),
+ # 3x1卷积,处理水平特征
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),
nn.ReLU(),
+ # 1x3卷积,处理垂直特征
nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),
nn.ReLU(),
+ # 1x1卷积,恢复通道数
nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),
)
def forward(self, x):
return self.block(x)
+# LPRNet模型定义 - 车牌识别网络
class LPRNet(nn.Module):
def __init__(self, lpr_max_len, phase, class_num, dropout_rate):
super(LPRNet, self).__init__()
self.phase = phase
self.lpr_max_len = lpr_max_len
self.class_num = class_num
+
+ # 定义主干网络
self.backbone = nn.Sequential(
+ # 初始卷积层
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0
nn.BatchNorm2d(num_features=64),
nn.ReLU(), # 2
+ # 最大池化层
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),
+ # 第一个基本块
small_basic_block(ch_in=64, ch_out=128), # *** 4 ***
nn.BatchNorm2d(num_features=128),
nn.ReLU(), # 6
+ # 第二个池化层
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),
+ # 第二个基本块
small_basic_block(ch_in=64, ch_out=256), # 8
nn.BatchNorm2d(num_features=256),
nn.ReLU(), # 10
+ # 第三个基本块
small_basic_block(ch_in=256, ch_out=256), # *** 11 ***
nn.BatchNorm2d(num_features=256),
nn.ReLU(), # 13
+ # 第三个池化层
nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)), # 14
+ # Dropout层,防止过拟合
nn.Dropout(dropout_rate),
+ # 特征提取卷积层
nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1), # 16
nn.BatchNorm2d(num_features=256),
nn.ReLU(), # 18
+ # 第二个Dropout层
nn.Dropout(dropout_rate),
+ # 分类卷积层
nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # 20
nn.BatchNorm2d(num_features=class_num),
nn.ReLU(), # 22
)
+
+ # 定义容器层,用于融合全局上下文信息
self.container = nn.Sequential(
nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1,1), stride=(1,1)),
)
def forward(self, x):
+ # 保存中间特征
keep_features = list()
for i, layer in enumerate(self.backbone.children()):
x = layer(x)
+ # 保存特定层的输出特征
if i in [2, 6, 13, 22]: # [2, 4, 8, 11, 22]
keep_features.append(x)
+ # 处理全局上下文信息
global_context = list()
for i, f in enumerate(keep_features):
+ # 对不同层的特征进行不同尺度的平均池化
if i in [0, 1]:
f = nn.AvgPool2d(kernel_size=5, stride=5)(f)
if i in [2]:
f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)
+ # 对特征进行归一化处理
f_pow = torch.pow(f, 2)
f_mean = torch.mean(f_pow)
f = torch.div(f, f_mean)
global_context.append(f)
+ # 拼接全局上下文特征
x = torch.cat(global_context, 1)
+ # 通过容器层处理
x = self.container(x)
+ # 对序列维度进行平均,得到最终输出
logits = torch.mean(x, dim=2)
return logits
+# LPRNet推理类
class LPRNetInference:
def __init__(self, model_path=None, img_size=[94, 24], lpr_max_len=8, dropout_rate=0.5):
"""
@@ -109,6 +142,7 @@ class LPRNetInference:
"""
self.img_size = img_size
self.lpr_max_len = lpr_max_len
+ # 检测是否有可用的CUDA设备
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 设置默认模型路径
@@ -130,6 +164,7 @@ class LPRNetInference:
else:
print(f"Warning: 模型文件不存在或未指定: {model_path}. 使用随机权重.")
+ # 将模型移动到指定设备并设置为评估模式
self.model.to(self.device)
self.model.eval()
@@ -164,9 +199,11 @@ class LPRNetInference:
image_array = cv2.resize(image_array, tuple(self.img_size))
# 使用与训练时相同的预处理方式
+ # 归一化处理:减去127.5并乘以0.0078125,将像素值从[0,255]映射到[-1,1]
image_array = image_array.astype('float32')
image_array -= 127.5
image_array *= 0.0078125
+ # 调整维度顺序从HWC到CHW
image_array = np.transpose(image_array, (2, 0, 1)) # HWC -> CHW
# 转换为tensor并添加batch维度
@@ -186,7 +223,7 @@ class LPRNetInference:
prebs = logits.cpu().detach().numpy()
preb = prebs[0, :, :] # 取第一个batch [num_classes, sequence_length]
- # 贪婪解码:对每个时间步选择最大概率的字符
+ # 贪婪解码: 对每个时间步选择最大概率的字符
preb_label = []
for j in range(preb.shape[1]): # 遍历每个时间步
preb_label.append(np.argmax(preb[:, j], axis=0))
@@ -248,7 +285,7 @@ class LPRNetInference:
print(f"预测图像失败: {e}")
return None, 0.0
-# 全局变量
+# 全局变量,用于存储模型实例
lpr_model = None
def LPRNinitialize_model():
@@ -295,6 +332,13 @@ def LPRNmodel_predict(image_array):
return ['待', '识', '别', '0', '0', '0', '0', '0']
try:
+ # 使用OpenCV调整图像大小到模型要求的尺寸
+ image_array = cv2.resize(image_array, (94, 24))
+ print(f"666999图片尺寸: {image_array.shape}")
+
+ # 显示修正后的图像
+ cv2.imshow('Resized License Plate Image (94x24)', image_array)
+ cv2.waitKey(1) # 非阻塞显示,允许程序继续执行
# 预测车牌号
predicted_text, confidence = lpr_model.predict(image_array)
diff --git a/OCR_part/ocr_interface.py b/OCR_part/ocr_interface.py
index b98c5b8..75770c0 100644
--- a/OCR_part/ocr_interface.py
+++ b/OCR_part/ocr_interface.py
@@ -5,6 +5,18 @@ import cv2
class OCRProcessor:
def __init__(self):
self.model = TextRecognition(model_name="PP-OCRv5_server_rec")
+ # 定义允许的字符集合(不包含空白字符)
+ self.allowed_chars = [
+ # 中文省份简称
+ '京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
+ '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
+ '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新',
+ # 字母 A-Z
+ 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
+ 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
+ # 数字 0-9
+ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'
+ ]
print("OCR模型初始化完成(占位)")
def predict(self, image_array):
@@ -14,6 +26,14 @@ class OCRProcessor:
results = output[0]["rec_text"]
placeholder_result = results.split(',')
return placeholder_result
+
+ def filter_allowed_chars(self, text):
+ """只保留允许的字符"""
+ filtered_text = ""
+ for char in text:
+ if char in self.allowed_chars:
+ filtered_text += char
+ return filtered_text
# 保留原有函数接口
_processor = OCRProcessor()
@@ -42,8 +62,12 @@ def LPRNmodel_predict(image_array):
else:
result_str = str(raw_result)
- # 过滤掉'·'字符
+ # 过滤掉'·'和'-'字符
filtered_str = result_str.replace('·', '')
+ filtered_str = filtered_str.replace('-', '')
+
+ # 只保留允许的字符
+ filtered_str = _processor.filter_allowed_chars(filtered_str)
# 转换为字符列表
char_list = list(filtered_str)
diff --git a/lightCRNN_part/best_model.pth b/lightCRNN_part/best_model.pth
new file mode 100644
index 0000000..122cf25
Binary files /dev/null and b/lightCRNN_part/best_model.pth differ
diff --git a/main.py b/main.py
index e0d6477..132ad5a 100644
--- a/main.py
+++ b/main.py
@@ -1,25 +1,22 @@
import sys
+import os
import cv2
import numpy as np
-from PyQt5.QtWidgets import (
- QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout,
- QLabel, QPushButton, QScrollArea, QFrame, QSizePolicy
-)
+from PyQt5.QtWidgets import QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout, QLabel, QPushButton, \
+ QFileDialog, QFrame, QScrollArea, QComboBox
from PyQt5.QtCore import QTimer, Qt, pyqtSignal, QThread
from PyQt5.QtGui import QImage, QPixmap, QFont, QPainter, QPen, QColor
-import os
from yolopart.detector import LicensePlateYOLO
#选择使用哪个模块
-from LPRNET_part.lpr_interface import LPRNmodel_predict
-from LPRNET_part.lpr_interface import LPRNinitialize_model
-
+# from LPRNET_part.lpr_interface import LPRNmodel_predict
+# from LPRNET_part.lpr_interface import LPRNinitialize_model
#使用OCR
-#from OCR_part.ocr_interface import LPRNmodel_predict
-#from OCR_part.ocr_interface import LPRNinitialize_model
+# from OCR_part.ocr_interface import LPRNmodel_predict
+# from OCR_part.ocr_interface import LPRNinitialize_model
# 使用CRNN
-#from CRNN_part.crnn_interface import LPRNmodel_predict
-#from CRNN_part.crnn_interface import LPRNinitialize_model
+# from CRNN_part.crnn_interface import LPRNmodel_predict
+# from CRNN_part.crnn_interface import LPRNinitialize_model
class CameraThread(QThread):
"""摄像头线程类"""
@@ -56,6 +53,60 @@ class CameraThread(QThread):
self.frame_ready.emit(frame)
self.msleep(30) # 约30fps
+class VideoThread(QThread):
+ """视频处理线程类"""
+ frame_ready = pyqtSignal(np.ndarray)
+ video_finished = pyqtSignal()
+
+ def __init__(self):
+ super().__init__()
+ self.video_path = None
+ self.cap = None
+ self.running = False
+ self.paused = False
+
+ def load_video(self, video_path):
+ """加载视频文件"""
+ self.video_path = video_path
+ self.cap = cv2.VideoCapture(video_path)
+ return self.cap.isOpened()
+
+ def start_video(self):
+ """开始播放视频"""
+ if self.cap and self.cap.isOpened():
+ self.running = True
+ self.paused = False
+ self.start()
+ return True
+ return False
+
+ def pause_video(self):
+ """暂停/继续视频"""
+ self.paused = not self.paused
+ return self.paused
+
+ def stop_video(self):
+ """停止视频"""
+ self.running = False
+ if self.cap:
+ self.cap.release()
+ self.quit()
+ self.wait()
+
+ def run(self):
+ """线程运行函数"""
+ while self.running:
+ if not self.paused and self.cap and self.cap.isOpened():
+ ret, frame = self.cap.read()
+ if ret:
+ self.frame_ready.emit(frame)
+ else:
+ # 视频播放结束
+ self.video_finished.emit()
+ self.running = False
+ break
+ self.msleep(30) # 约30fps
+
class LicensePlateWidget(QWidget):
"""单个车牌结果显示组件"""
@@ -162,15 +213,21 @@ class MainWindow(QMainWindow):
super().__init__()
self.detector = None
self.camera_thread = None
+ self.video_thread = None
self.current_frame = None
self.detections = []
+ self.current_mode = "camera" # 当前模式:camera, video, image
+ self.is_processing = False # 标志位,表示是否正在处理识别任务
+ self.last_plate_results = [] # 存储上一次的车牌识别结果
+ self.current_recognition_method = "CRNN" # 当前识别方法
self.init_ui()
self.init_detector()
self.init_camera()
+ self.init_video()
- # 初始化OCR/CRNN模型(函数名改成一样的了,所以不要修改这里了,想用哪个模块直接导入)
- LPRNinitialize_model()
+ # 初始化默认识别方法(CRNN)的模型
+ self.change_recognition_method(self.current_recognition_method)
def init_ui(self):
@@ -197,7 +254,7 @@ class MainWindow(QMainWindow):
self.camera_label.setStyleSheet("QLabel { background-color: black; border: 1px solid #ccc; }")
self.camera_label.setAlignment(Qt.AlignCenter)
self.camera_label.setText("摄像头未启动")
- self.camera_label.setScaledContents(True)
+ self.camera_label.setScaledContents(False)
# 控制按钮
button_layout = QHBoxLayout()
@@ -207,8 +264,26 @@ class MainWindow(QMainWindow):
self.stop_button.clicked.connect(self.stop_camera)
self.stop_button.setEnabled(False)
+ # 视频控制按钮
+ self.open_video_button = QPushButton("打开视频")
+ self.stop_video_button = QPushButton("停止视频")
+ self.pause_video_button = QPushButton("暂停视频")
+ self.open_video_button.clicked.connect(self.open_video_file)
+ self.stop_video_button.clicked.connect(self.stop_video)
+ self.pause_video_button.clicked.connect(self.pause_video)
+ self.stop_video_button.setEnabled(False)
+ self.pause_video_button.setEnabled(False)
+
+ # 图片控制按钮
+ self.open_image_button = QPushButton("打开图片")
+ self.open_image_button.clicked.connect(self.open_image_file)
+
button_layout.addWidget(self.start_button)
button_layout.addWidget(self.stop_button)
+ button_layout.addWidget(self.open_video_button)
+ button_layout.addWidget(self.stop_video_button)
+ button_layout.addWidget(self.pause_video_button)
+ button_layout.addWidget(self.open_image_button)
button_layout.addStretch()
left_layout.addWidget(self.camera_label)
@@ -227,6 +302,20 @@ class MainWindow(QMainWindow):
title_label.setFont(QFont("Arial", 16, QFont.Bold))
title_label.setStyleSheet("QLabel { color: #333; padding: 10px; }")
+ # 识别方法选择
+ method_layout = QHBoxLayout()
+ method_label = QLabel("识别方法:")
+ method_label.setFont(QFont("Arial", 10))
+
+ self.method_combo = QComboBox()
+ self.method_combo.addItems(["CRNN", "LPRNET", "OCR"])
+ self.method_combo.setCurrentText("CRNN") # 默认选择CRNN
+ self.method_combo.currentTextChanged.connect(self.change_recognition_method)
+
+ method_layout.addWidget(method_label)
+ method_layout.addWidget(self.method_combo)
+ method_layout.addStretch()
+
# 车牌数量显示
self.count_label = QLabel("识别到的车牌数量: 0")
self.count_label.setAlignment(Qt.AlignCenter)
@@ -253,9 +342,17 @@ class MainWindow(QMainWindow):
scroll_area.setWidget(self.results_widget)
+ # 当前识别任务显示
+ self.current_method_label = QLabel("当前识别方法: CRNN")
+ self.current_method_label.setAlignment(Qt.AlignRight)
+ self.current_method_label.setFont(QFont("Arial", 9))
+ self.current_method_label.setStyleSheet("QLabel { color: #666; padding: 5px; }")
+
right_layout.addWidget(title_label)
+ right_layout.addLayout(method_layout)
right_layout.addWidget(self.count_label)
right_layout.addWidget(scroll_area)
+ right_layout.addWidget(self.current_method_label)
# 添加到主布局
main_layout.addWidget(left_frame, 2)
@@ -296,6 +393,12 @@ class MainWindow(QMainWindow):
self.camera_thread = CameraThread()
self.camera_thread.frame_ready.connect(self.process_frame)
+ def init_video(self):
+ """初始化视频线程"""
+ self.video_thread = VideoThread()
+ self.video_thread.frame_ready.connect(self.process_frame)
+ self.video_thread.video_finished.connect(self.on_video_finished)
+
def start_camera(self):
"""启动摄像头"""
if self.camera_thread.start_camera():
@@ -311,23 +414,167 @@ class MainWindow(QMainWindow):
self.start_button.setEnabled(True)
self.stop_button.setEnabled(False)
self.camera_label.setText("摄像头已停止")
- self.camera_label.clear()
+ # 只在摄像头模式下清除标签内容
+ if self.current_mode == "camera":
+ self.camera_label.clear()
+
+ def on_video_finished(self):
+ """视频播放结束时的处理"""
+ self.video_thread.stop_video()
+ self.open_video_button.setEnabled(True)
+ self.stop_video_button.setEnabled(False)
+ self.pause_video_button.setEnabled(False)
+ self.camera_label.setText("视频播放结束")
+ self.current_mode = "camera"
+
+ def open_video_file(self):
+ """打开视频文件"""
+ # 停止当前模式
+ if self.current_mode == "camera" and self.camera_thread and self.camera_thread.running:
+ self.stop_camera()
+ elif self.current_mode == "video" and self.video_thread and self.video_thread.running:
+ self.stop_video()
+
+ # 选择视频文件
+ video_path, _ = QFileDialog.getOpenFileName(self, "选择视频文件", "", "视频文件 (*.mp4 *.avi *.mov *.mkv)")
+
+ if video_path:
+ if self.video_thread.load_video(video_path):
+ self.current_mode = "video"
+ self.start_video()
+ self.camera_label.setText(f"正在播放视频: {os.path.basename(video_path)}")
+ else:
+ self.camera_label.setText("视频加载失败")
+
+ def start_video(self):
+ """开始播放视频"""
+ if self.video_thread.start_video():
+ self.open_video_button.setEnabled(False)
+ self.stop_video_button.setEnabled(True)
+ self.pause_video_button.setEnabled(True)
+ self.pause_video_button.setText("暂停")
+ else:
+ self.camera_label.setText("视频播放失败")
+
+ def pause_video(self):
+ """暂停/继续视频"""
+ if self.video_thread.pause_video():
+ self.pause_video_button.setText("继续")
+ else:
+ self.pause_video_button.setText("暂停")
+
+ def stop_video(self):
+ """停止视频"""
+ self.video_thread.stop_video()
+ self.open_video_button.setEnabled(True)
+ self.stop_video_button.setEnabled(False)
+ self.pause_video_button.setEnabled(False)
+ self.camera_label.setText("视频已停止")
+ # 只在视频模式下清除标签内容
+ if self.current_mode == "video":
+ self.camera_label.clear()
+ self.current_mode = "camera"
+
+ def open_image_file(self):
+ """打开图片文件"""
+ # 停止当前模式
+ if self.current_mode == "camera" and self.camera_thread and self.camera_thread.running:
+ self.stop_camera()
+ elif self.current_mode == "video" and self.video_thread and self.video_thread.running:
+ self.stop_video()
+
+ # 选择图片文件
+ image_path, _ = QFileDialog.getOpenFileName(self, "选择图片文件", "", "图片文件 (*.jpg *.jpeg *.png *.bmp)")
+
+ if image_path:
+ self.current_mode = "image"
+ try:
+ # 读取图片 - 方法1: 使用cv2.imdecode处理中文路径
+ image = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
+
+ # 如果方法1失败,尝试方法2: 直接使用cv2.imread
+ if image is None:
+ image = cv2.imread(image_path)
+
+ if image is not None:
+ print(f"成功加载图片: {image_path}, 尺寸: {image.shape}")
+ self.process_image(image)
+ # 不在这里设置文本,避免覆盖图片
+ # self.camera_label.setText(f"正在显示图片: {os.path.basename(image_path)}")
+ else:
+ print(f"图片加载失败: {image_path}")
+ self.camera_label.setText("图片加载失败")
+ except Exception as e:
+ print(f"图片处理异常: {str(e)}")
+ self.camera_label.setText(f"图片处理错误: {str(e)}")
+
+ def process_image(self, image):
+ """处理图片"""
+ try:
+ print(f"开始处理图片,图片尺寸: {image.shape}")
+ self.current_frame = image.copy()
+
+ # 进行车牌检测
+ print("正在进行车牌检测...")
+ self.detections = self.detector.detect_license_plates(image)
+ print(f"检测到 {len(self.detections)} 个车牌")
+
+ # 在图像上绘制检测结果
+ print("正在绘制检测结果...")
+ display_frame = self.draw_detections(image.copy())
+
+ # 转换为Qt格式并显示
+ print("正在显示图片...")
+ self.display_frame(display_frame)
+
+ # 更新右侧结果显示
+ print("正在更新结果显示...")
+ self.update_results_display()
+ print("图片处理完成")
+ except Exception as e:
+ print(f"图片处理过程中出错: {str(e)}")
+ import traceback
+ traceback.print_exc()
def process_frame(self, frame):
"""处理摄像头帧"""
self.current_frame = frame.copy()
- # 进行车牌检测
- self.detections = self.detector.detect_license_plates(frame)
+ # 先显示原始帧,保证视频流畅播放
+ self.display_frame(frame)
- # 在图像上绘制检测结果
- display_frame = self.draw_detections(frame.copy())
-
- # 转换为Qt格式并显示
- self.display_frame(display_frame)
-
- # 更新右侧结果显示
- self.update_results_display()
+ # 如果当前没有在处理识别任务,则开始新的识别任务
+ if not self.is_processing:
+ self.is_processing = True
+ # 异步进行车牌检测和识别
+ QTimer.singleShot(0, self.async_detect_and_update)
+
+ def async_detect_and_update(self):
+ """异步进行车牌检测和识别"""
+ if self.current_frame is None:
+ self.is_processing = False # 重置标志位
+ return
+
+ try:
+ # 进行车牌检测
+ self.detections = self.detector.detect_license_plates(self.current_frame)
+
+ # 在图像上绘制检测结果
+ display_frame = self.draw_detections(self.current_frame.copy())
+
+ # 更新显示帧(显示带检测结果的帧)
+ # 无论是摄像头模式还是视频模式,都显示检测框
+ self.display_frame(display_frame)
+
+ # 更新右侧结果显示
+ self.update_results_display()
+ except Exception as e:
+ print(f"异步检测和更新失败: {str(e)}")
+ import traceback
+ traceback.print_exc()
+ finally:
+ # 无论成功或失败,都要重置标志位
+ self.is_processing = False
def draw_detections(self, frame):
"""在图像上绘制检测结果"""
@@ -335,14 +582,96 @@ class MainWindow(QMainWindow):
def display_frame(self, frame):
"""显示帧到界面"""
- rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
- h, w, ch = rgb_frame.shape
- bytes_per_line = ch * w
- qt_image = QImage(rgb_frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
-
- pixmap = QPixmap.fromImage(qt_image)
- scaled_pixmap = pixmap.scaled(self.camera_label.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation)
- self.camera_label.setPixmap(scaled_pixmap)
+ try:
+ print(f"开始显示帧,帧尺寸: {frame.shape}")
+
+ # 方法1: 标准方法
+ try:
+ rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
+ h, w, ch = rgb_frame.shape
+ bytes_per_line = ch * w
+ qt_image = QImage(rgb_frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
+
+ print(f"方法1: 创建QImage,尺寸: {qt_image.width()}x{qt_image.height()}")
+ if qt_image.isNull():
+ print("方法1: QImage为空,尝试方法2")
+ raise Exception("QImage为空")
+
+ pixmap = QPixmap.fromImage(qt_image)
+ if pixmap.isNull():
+ print("方法1: QPixmap为空,尝试方法2")
+ raise Exception("QPixmap为空")
+
+ # 手动缩放图片以适应标签大小,保持宽高比
+ scaled_pixmap = pixmap.scaled(self.camera_label.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation)
+ self.camera_label.setPixmap(scaled_pixmap)
+ print("方法1: 帧显示完成")
+ return
+ except Exception as e1:
+ print(f"方法1失败: {str(e1)}")
+
+ # 方法2: 使用imencode和imdecode
+ try:
+ print("尝试方法2: 使用imencode和imdecode")
+ _, buffer = cv2.imencode('.jpg', frame)
+ rgb_frame = cv2.imdecode(buffer, cv2.IMREAD_COLOR)
+ rgb_frame = cv2.cvtColor(rgb_frame, cv2.COLOR_BGR2RGB)
+ h, w, ch = rgb_frame.shape
+ bytes_per_line = ch * w
+ qt_image = QImage(rgb_frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
+
+ print(f"方法2: 创建QImage,尺寸: {qt_image.width()}x{qt_image.height()}")
+ if qt_image.isNull():
+ print("方法2: QImage为空")
+ raise Exception("QImage为空")
+
+ pixmap = QPixmap.fromImage(qt_image)
+ if pixmap.isNull():
+ print("方法2: QPixmap为空")
+ raise Exception("QPixmap为空")
+
+ # 手动缩放图片以适应标签大小,保持宽高比
+ scaled_pixmap = pixmap.scaled(self.camera_label.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation)
+ self.camera_label.setPixmap(scaled_pixmap)
+ print("方法2: 帧显示完成")
+ return
+ except Exception as e2:
+ print(f"方法2失败: {str(e2)}")
+
+ # 方法3: 直接使用QImage的构造函数
+ try:
+ print("尝试方法3: 直接使用QImage的构造函数")
+ height, width, channel = frame.shape
+ bytes_per_line = 3 * width
+ q_image = QImage(frame.data, width, height, bytes_per_line, QImage.Format_BGR888)
+
+ print(f"方法3: 创建QImage,尺寸: {q_image.width()}x{q_image.height()}")
+ if q_image.isNull():
+ print("方法3: QImage为空")
+ raise Exception("QImage为空")
+
+ pixmap = QPixmap.fromImage(q_image)
+ if pixmap.isNull():
+ print("方法3: QPixmap为空")
+ raise Exception("QPixmap为空")
+
+ # 手动缩放图片以适应标签大小,保持宽高比
+ scaled_pixmap = pixmap.scaled(self.camera_label.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation)
+ self.camera_label.setPixmap(scaled_pixmap)
+ print("方法3: 帧显示完成")
+ return
+ except Exception as e3:
+ print(f"方法3失败: {str(e3)}")
+
+ # 所有方法都失败
+ print("所有显示方法都失败")
+ self.camera_label.setText("图片显示失败")
+
+ except Exception as e:
+ print(f"显示帧过程中出错: {str(e)}")
+ import traceback
+ traceback.print_exc()
+ self.camera_label.setText(f"显示错误: {str(e)}")
def update_results_display(self):
"""更新右侧结果显示"""
@@ -350,13 +679,8 @@ class MainWindow(QMainWindow):
count = len(self.detections)
self.count_label.setText(f"识别到的车牌数量: {count}")
- # 清除之前的结果
- for i in reversed(range(self.results_layout.count())):
- child = self.results_layout.itemAt(i).widget()
- if child:
- child.setParent(None)
-
- # 添加新的结果
+ # 准备新的车牌结果列表
+ new_plate_results = []
for i, detection in enumerate(self.detections):
# 矫正车牌图像
corrected_image = self.correct_license_plate(detection)
@@ -364,15 +688,53 @@ class MainWindow(QMainWindow):
# 获取车牌号,传入车牌类型信息
plate_number = self.recognize_plate_number(corrected_image, detection['class_name'])
- # 创建车牌显示组件
- plate_widget = LicensePlateWidget(
- i + 1,
- detection['class_name'],
- corrected_image,
- plate_number
- )
+ # 添加到新结果列表
+ new_plate_results.append({
+ 'id': i + 1,
+ 'class_name': detection['class_name'],
+ 'corrected_image': corrected_image,
+ 'plate_number': plate_number
+ })
+
+ # 比较新旧结果是否相同
+ results_changed = False
+ if len(self.last_plate_results) != len(new_plate_results):
+ results_changed = True
+ else:
+ for i in range(len(new_plate_results)):
+ if i >= len(self.last_plate_results):
+ results_changed = True
+ break
+
+ last_result = self.last_plate_results[i]
+ new_result = new_plate_results[i]
+
+ # 比较车牌类型和车牌号
+ if (last_result['class_name'] != new_result['class_name'] or
+ last_result['plate_number'] != new_result['plate_number']):
+ results_changed = True
+ break
+
+ # 只有当结果发生变化时才更新显示
+ if results_changed:
+ # 清除之前的结果
+ for i in reversed(range(self.results_layout.count())):
+ child = self.results_layout.itemAt(i).widget()
+ if child:
+ child.setParent(None)
- self.results_layout.addWidget(plate_widget)
+ # 添加新的结果
+ for result in new_plate_results:
+ plate_widget = LicensePlateWidget(
+ result['id'],
+ result['class_name'],
+ result['corrected_image'],
+ result['plate_number']
+ )
+ self.results_layout.addWidget(plate_widget)
+
+ # 更新存储的上一次结果
+ self.last_plate_results = new_plate_results
def correct_license_plate(self, detection):
"""矫正车牌图像"""
@@ -390,40 +752,69 @@ class MainWindow(QMainWindow):
)
def recognize_plate_number(self, corrected_image, class_name):
- """识别车牌号"""
- if corrected_image is None:
- return "识别失败"
-
- try:
- # 预测函数(来自模块)
- # 函数名改成一样的了,所以不要修改这里了,想用哪个模块直接导入
- result = LPRNmodel_predict(corrected_image)
-
- # 将字符列表转换为字符串,支持8位车牌号
- if isinstance(result, list) and len(result) >= 7:
- # 根据车牌类型决定显示位数
- if class_name == '绿牌' and len(result) >= 8:
- # 绿牌显示8位,过滤掉空字符占位符
- plate_chars = [char for char in result[:8] if char != '']
- # 如果过滤后确实有8位,显示8位;否则显示7位
- if len(plate_chars) == 8:
- return ''.join(plate_chars)
- else:
- return ''.join(plate_chars[:7])
- else:
- # 蓝牌或其他类型显示前7位,过滤掉空字符
- plate_chars = [char for char in result[:7] if char != '']
- return ''.join(plate_chars)
- else:
- return "识别失败"
- except Exception as e:
- print(f"车牌号识别失败: {e}")
- return "识别失败"
+ """识别车牌号"""
+ if corrected_image is None:
+ return "识别失败"
+
+ try:
+ # 根据当前选择的识别方法调用相应的函数
+ if self.current_recognition_method == "CRNN":
+ from CRNN_part.crnn_interface import LPRNmodel_predict
+ elif self.current_recognition_method == "LPRNET":
+ from lightCRNN_part.lightcrnn_interface import LPRNmodel_predict
+ elif self.current_recognition_method == "OCR":
+ from OCR_part.ocr_interface import LPRNmodel_predict
+
+ # 预测函数(来自模块)
+ result = LPRNmodel_predict(corrected_image)
+
+ # 将字符列表转换为字符串,支持8位车牌号
+ if isinstance(result, list) and len(result) >= 7:
+ # 根据车牌类型决定显示位数
+ if class_name == '绿牌' and len(result) >= 8:
+ # 绿牌显示8位,过滤掉空字符占位符
+ plate_chars = [char for char in result[:8] if char != '']
+ # 如果过滤后确实有8位,显示8位;否则显示7位
+ if len(plate_chars) == 8:
+ return ''.join(plate_chars)
+ else:
+ return ''.join(plate_chars[:7])
+ else:
+ # 蓝牌或其他类型显示前7位,过滤掉空字符
+ plate_chars = [char for char in result[:7] if char != '']
+ return ''.join(plate_chars)
+ else:
+ return "识别失败"
+ except Exception as e:
+ print(f"车牌号识别失败: {e}")
+ return "识别失败"
+
+ def change_recognition_method(self, method):
+ """切换识别方法"""
+ self.current_recognition_method = method
+ self.current_method_label.setText(f"当前识别方法: {method}")
+
+ # 初始化对应的模型
+ if method == "CRNN":
+ from CRNN_part.crnn_interface import LPRNinitialize_model
+ LPRNinitialize_model()
+ elif method == "LPRNET":
+ from lightCRNN_part.lightcrnn_interface import LPRNinitialize_model
+ LPRNinitialize_model()
+ elif method == "OCR":
+ from OCR_part.ocr_interface import LPRNinitialize_model
+ LPRNinitialize_model()
+
+ # 如果当前有显示的帧,重新处理以更新识别结果
+ if self.current_frame is not None:
+ self.process_frame(self.current_frame)
def closeEvent(self, event):
"""窗口关闭事件"""
- if self.camera_thread:
+ if self.camera_thread and self.camera_thread.running:
self.camera_thread.stop_camera()
+ if self.video_thread and self.video_thread.running:
+ self.video_thread.stop_video()
event.accept()
def main():
diff --git a/test_lpr_real_images.py b/test_lpr_real_images.py
new file mode 100644
index 0000000..b3f859b
--- /dev/null
+++ b/test_lpr_real_images.py
@@ -0,0 +1,100 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+"""
+LPRNet接口真实图片测试脚本
+测试LPRNET_part目录下的真实车牌图片
+"""
+
+import cv2
+import numpy as np
+import os
+from LPRNET_part.lpr_interface import LPRNinitialize_model, LPRNmodel_predict
+
+def test_real_images():
+ """
+ 测试LPRNET_part目录下的真实车牌图片
+ """
+ print("=== LPRNet真实图片测试 ===")
+
+ # 初始化模型
+ print("1. 初始化LPRNet模型...")
+ success = LPRNinitialize_model()
+ if not success:
+ print("模型初始化失败!")
+ return
+
+ # 获取LPRNET_part目录下的图片文件
+ lprnet_dir = "LPRNET_part"
+ image_files = []
+
+ if os.path.exists(lprnet_dir):
+ for file in os.listdir(lprnet_dir):
+ if file.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp')):
+ image_files.append(os.path.join(lprnet_dir, file))
+
+ if not image_files:
+ print("未找到图片文件!")
+ return
+
+ print(f"2. 找到 {len(image_files)} 个图片文件")
+
+ # 测试每个图片
+ for i, image_path in enumerate(image_files, 1):
+ print(f"\n--- 测试图片 {i}: {os.path.basename(image_path)} ---")
+
+ try:
+ # 使用支持中文路径的方式读取图片
+ image = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
+
+ if image is None:
+ print(f"无法读取图片: {image_path}")
+ continue
+
+ print(f"图片尺寸: {image.shape}")
+
+ # 进行预测
+ result = LPRNmodel_predict(image)
+ print(f"识别结果: {result}")
+ print(f"识别车牌号: {''.join(result)}")
+
+ except Exception as e:
+ print(f"处理图片 {image_path} 时出错: {e}")
+ import traceback
+ traceback.print_exc()
+
+ print("\n=== 测试完成 ===")
+
+def test_image_loading():
+ """
+ 测试图片加载方式
+ """
+ print("\n=== 图片加载测试 ===")
+
+ lprnet_dir = "LPRNET_part"
+
+ if os.path.exists(lprnet_dir):
+ for file in os.listdir(lprnet_dir):
+ if file.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp')):
+ image_path = os.path.join(lprnet_dir, file)
+ print(f"\n测试文件: {file}")
+
+ # 方法1: 普通cv2.imread
+ img1 = cv2.imread(image_path)
+ print(f"cv2.imread结果: {img1 is not None}")
+
+ # 方法2: 支持中文路径的方式
+ try:
+ img2 = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
+ # img2 = cv2.resize(img2,(128,48))
+ print(f"cv2.imdecode结果: {img2 is not None}")
+ if img2 is not None:
+ print(f"图片尺寸: {img2.shape}")
+ except Exception as e:
+ print(f"cv2.imdecode失败: {e}")
+
+if __name__ == "__main__":
+ # 首先测试图片加载
+ test_image_loading()
+
+ # 然后测试完整的识别流程
+ test_real_images()
\ No newline at end of file