diff --git a/main.py b/main.py index 1058d9d..9b26bf7 100644 --- a/main.py +++ b/main.py @@ -2,6 +2,7 @@ import sys import os import cv2 import numpy as np +from collections import defaultdict, deque from PyQt5.QtWidgets import QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout, QLabel, QPushButton, \ QFileDialog, QFrame, QScrollArea, QComboBox from PyQt5.QtCore import QTimer, Qt, pyqtSignal, QThread @@ -18,6 +19,190 @@ from yolopart.detector import LicensePlateYOLO # from CRNN_part.crnn_interface import LPRNmodel_predict # from CRNN_part.crnn_interface import LPRNinitialize_model +class PlateStabilizer: + """车牌识别结果稳定器""" + + def __init__(self, history_size=10, confidence_threshold=0.6, stability_frames=5): + self.history_size = history_size # 历史帧数量 + self.confidence_threshold = confidence_threshold # 置信度阈值 + self.stability_frames = stability_frames # 稳定帧数要求 + + # 存储每个车牌的历史识别结果 + self.plate_histories = defaultdict(lambda: deque(maxlen=history_size)) + # 存储当前稳定的车牌结果 + self.stable_results = {} + # 车牌ID计数器 + self.plate_id_counter = 0 + # 车牌位置追踪 + self.plate_positions = {} + + def calculate_plate_distance(self, pos1, pos2): + """计算两个车牌位置的距离""" + if pos1 is None or pos2 is None: + return float('inf') + + # 计算中心点距离 + center1 = ((pos1[0] + pos1[2]) / 2, (pos1[1] + pos1[3]) / 2) + center2 = ((pos2[0] + pos2[2]) / 2, (pos2[1] + pos2[3]) / 2) + + return np.sqrt((center1[0] - center2[0])**2 + (center1[1] - center2[1])**2) + + def match_plates_to_history(self, current_detections): + """将当前检测结果匹配到历史记录""" + matched_plates = {} + used_ids = set() + + for detection in current_detections: + bbox = detection.get('bbox', [0, 0, 0, 0]) + best_match_id = None + min_distance = float('inf') + + # 寻找最佳匹配的历史车牌 + for plate_id, last_pos in self.plate_positions.items(): + if plate_id in used_ids: + continue + + distance = self.calculate_plate_distance(bbox, last_pos) + if distance < min_distance and distance < 100: # 距离阈值 + min_distance = distance + best_match_id = plate_id + + if best_match_id is not None: + matched_plates[best_match_id] = detection + used_ids.add(best_match_id) + self.plate_positions[best_match_id] = bbox + else: + # 创建新的车牌ID + new_id = f"plate_{self.plate_id_counter}" + self.plate_id_counter += 1 + matched_plates[new_id] = detection + self.plate_positions[new_id] = bbox + + return matched_plates + + def calculate_confidence(self, plate_text, detection_quality=1.0): + """计算识别结果的置信度""" + if not plate_text or plate_text == "识别失败": + return 0.0 + + # 基础置信度基于文本长度和字符类型 + base_confidence = 0.5 + + # 长度合理性检查 + if 7 <= len(plate_text) <= 8: + base_confidence += 0.2 + + # 字符类型检查(中文+字母+数字的组合) + has_chinese = any('\u4e00' <= char <= '\u9fff' for char in plate_text) + has_letter = any(char.isalpha() for char in plate_text) + has_digit = any(char.isdigit() for char in plate_text) + + if has_chinese and has_letter and has_digit: + base_confidence += 0.2 + + # 检测质量影响 + confidence = base_confidence * detection_quality + + return min(confidence, 1.0) + + def update_and_get_stable_result(self, current_detections, corrected_images, plate_texts): + """更新历史记录并返回稳定的识别结果""" + if not current_detections: + return [] + + # 匹配当前检测到历史记录 + matched_plates = self.match_plates_to_history(current_detections) + + stable_results = [] + + for plate_id, detection in matched_plates.items(): + # 获取对应的矫正图像和识别文本 + detection_idx = current_detections.index(detection) + corrected_image = corrected_images[detection_idx] if detection_idx < len(corrected_images) else None + plate_text = plate_texts[detection_idx] if detection_idx < len(plate_texts) else "识别失败" + + # 计算置信度 + confidence = self.calculate_confidence(plate_text) + + # 添加到历史记录 + history_entry = { + 'text': plate_text, + 'confidence': confidence, + 'detection': detection, + 'corrected_image': corrected_image + } + self.plate_histories[plate_id].append(history_entry) + + # 计算稳定结果 + stable_text = self.get_stable_text(plate_id) + + if stable_text and stable_text != "识别失败": + stable_results.append({ + 'id': plate_id, + 'class_name': detection['class_name'], + 'corrected_image': corrected_image, + 'plate_number': stable_text, + 'detection': detection + }) + + return stable_results + + def get_stable_text(self, plate_id): + """获取指定车牌的稳定识别结果""" + history = self.plate_histories[plate_id] + + if len(history) < 3: # 历史记录太少,返回最新结果 + return history[-1]['text'] if history else "识别失败" + + # 统计各种识别结果的加权投票 + text_votes = defaultdict(float) + total_confidence = 0 + + for entry in history: + text = entry['text'] + confidence = entry['confidence'] + + if text != "识别失败" and confidence > 0.3: + text_votes[text] += confidence + total_confidence += confidence + + if not text_votes: + return "识别失败" + + # 找到得票最高的结果 + best_text = max(text_votes.items(), key=lambda x: x[1]) + + # 检查是否足够稳定(得票率超过阈值) + vote_ratio = best_text[1] / total_confidence if total_confidence > 0 else 0 + + if vote_ratio >= self.confidence_threshold: + return best_text[0] + else: + # 不够稳定,返回最近的高置信度结果 + recent_high_conf = [entry for entry in list(history)[-5:] + if entry['confidence'] > 0.5 and entry['text'] != "识别失败"] + + if recent_high_conf: + return recent_high_conf[-1]['text'] + else: + return history[-1]['text'] + + def clear_old_plates(self, current_plate_ids): + """清理不再出现的车牌历史记录""" + # 移除超过一定时间未更新的车牌 + plates_to_remove = [] + for plate_id in self.plate_histories.keys(): + if plate_id not in current_plate_ids: + plates_to_remove.append(plate_id) + + for plate_id in plates_to_remove: + if plate_id in self.plate_histories: + del self.plate_histories[plate_id] + if plate_id in self.plate_positions: + del self.plate_positions[plate_id] + if plate_id in self.stable_results: + del self.stable_results[plate_id] + class CameraThread(QThread): """摄像头线程类""" frame_ready = pyqtSignal(np.ndarray) @@ -118,6 +303,7 @@ class LicensePlateWidget(QWidget): def init_ui(self, class_name, corrected_image, plate_number): layout = QHBoxLayout() layout.setContentsMargins(10, 5, 10, 5) + layout.setSpacing(8) # 设置组件间距 # 车牌类型标签 type_label = QLabel(class_name) @@ -155,7 +341,6 @@ class LicensePlateWidget(QWidget): # 矫正后的车牌图像 image_label = QLabel() - image_label.setFixedSize(120, 40) image_label.setStyleSheet("border: 1px solid #ddd; background-color: white;") if corrected_image is not None: @@ -169,16 +354,44 @@ class LicensePlateWidget(QWidget): q_image = QImage(corrected_image.data, w, h, bytes_per_line, QImage.Format_Grayscale8) pixmap = QPixmap.fromImage(q_image) - scaled_pixmap = pixmap.scaled(120, 40, Qt.KeepAspectRatio, Qt.SmoothTransformation) + + # 动态计算显示尺寸,保持车牌的宽高比 + original_width = pixmap.width() + original_height = pixmap.height() + + # 设置最大显示尺寸限制 + max_width = 150 + max_height = 60 + + # 计算缩放比例,确保图像完整显示 + width_ratio = max_width / original_width if original_width > 0 else 1 + height_ratio = max_height / original_height if original_height > 0 else 1 + scale_ratio = min(width_ratio, height_ratio, 1.0) # 不放大,只缩小 + + # 计算实际显示尺寸 + display_width = int(original_width * scale_ratio) + display_height = int(original_height * scale_ratio) + + # 确保最小显示尺寸 + display_width = max(display_width, 80) + display_height = max(display_height, 25) + + # 设置标签尺寸并缩放图像 + image_label.setFixedSize(display_width, display_height) + scaled_pixmap = pixmap.scaled(display_width, display_height, Qt.KeepAspectRatio, Qt.SmoothTransformation) image_label.setPixmap(scaled_pixmap) + image_label.setAlignment(Qt.AlignCenter) else: + # 当没有图像时,设置固定尺寸显示提示信息 + image_label.setFixedSize(120, 40) image_label.setText("车牌未完全\n进入摄像头") image_label.setAlignment(Qt.AlignCenter) image_label.setStyleSheet("border: 1px solid #ddd; background-color: #f5f5f5; color: #666;") - # 车牌号标签 + # 车牌号标签 - 使用自适应宽度 number_label = QLabel(plate_number) - number_label.setFixedWidth(150) + number_label.setMinimumWidth(120) # 设置最小宽度 + number_label.setMaximumWidth(200) # 设置最大宽度 number_label.setAlignment(Qt.AlignCenter) number_label.setStyleSheet( "QLabel { " @@ -190,6 +403,11 @@ class LicensePlateWidget(QWidget): "font-weight: bold; " "}" ) + # 根据文本长度调整宽度 + font_metrics = number_label.fontMetrics() + text_width = font_metrics.boundingRect(plate_number).width() + optimal_width = max(120, min(200, text_width + 20)) # 加20像素的边距 + number_label.setFixedWidth(optimal_width) layout.addWidget(type_label) layout.addWidget(image_label) @@ -197,6 +415,9 @@ class LicensePlateWidget(QWidget): layout.addStretch() self.setLayout(layout) + # 调整整体组件的最小高度以适应动态图像尺寸 + min_height = max(60, image_label.height() + 20) # 至少60像素高度 + self.setMinimumHeight(min_height) self.setStyleSheet( "QWidget { " "background-color: white; " @@ -221,6 +442,13 @@ class MainWindow(QMainWindow): self.last_plate_results = [] # 存储上一次的车牌识别结果 self.current_recognition_method = "CRNN" # 当前识别方法 + # 添加车牌稳定器 + self.plate_stabilizer = PlateStabilizer( + history_size=15, # 保存15帧历史 + confidence_threshold=0.7, # 70%置信度阈值 + stability_frames=5 # 需要5帧稳定 + ) + self.init_ui() self.init_detector() self.init_camera() @@ -292,7 +520,7 @@ class MainWindow(QMainWindow): # 右侧结果显示区域 right_frame = QFrame() right_frame.setFrameStyle(QFrame.StyledPanel) - right_frame.setFixedWidth(400) + right_frame.setFixedWidth(460) right_frame.setStyleSheet("QFrame { background-color: #fafafa; border: 2px solid #ddd; }") right_layout = QVBoxLayout(right_frame) @@ -388,6 +616,32 @@ class MainWindow(QMainWindow): model_path = os.path.join(os.path.dirname(__file__), "yolopart", "yolo11s-pose42.pt") self.detector = LicensePlateYOLO(model_path) + def reset_processing_state(self): + """重置处理状态和清理界面""" + # 重置处理标志 + self.is_processing = False + + # 清空当前帧和检测结果 + self.current_frame = None + self.detections = [] + + # 重置车牌稳定器 + self.plate_stabilizer = PlateStabilizer( + history_size=15, + confidence_threshold=0.7, + stability_frames=5 + ) + + # 清空右侧结果显示 + self.count_label.setText("识别到的车牌数量: 0") + for i in reversed(range(self.results_layout.count())): + child = self.results_layout.itemAt(i).widget() + if child: + child.setParent(None) + self.last_plate_results = [] + + print("处理状态已重置,界面已清理") + def init_camera(self): """初始化摄像头线程""" self.camera_thread = CameraThread() @@ -401,7 +655,11 @@ class MainWindow(QMainWindow): def start_camera(self): """启动摄像头""" + # 重置处理状态和清理界面 + self.reset_processing_state() + if self.camera_thread.start_camera(): + self.current_mode = "camera" self.start_button.setEnabled(False) self.stop_button.setEnabled(True) self.camera_label.setText("摄像头启动中...") @@ -435,6 +693,9 @@ class MainWindow(QMainWindow): elif self.current_mode == "video" and self.video_thread and self.video_thread.running: self.stop_video() + # 重置处理状态和清理界面 + self.reset_processing_state() + # 选择视频文件 video_path, _ = QFileDialog.getOpenFileName(self, "选择视频文件", "", "视频文件 (*.mp4 *.avi *.mov *.mkv)") @@ -483,6 +744,9 @@ class MainWindow(QMainWindow): elif self.current_mode == "video" and self.video_thread and self.video_thread.running: self.stop_video() + # 重置处理状态和清理界面 + self.reset_processing_state() + # 选择图片文件 image_path, _ = QFileDialog.getOpenFileName(self, "选择图片文件", "", "图片文件 (*.jpg *.jpeg *.png *.bmp)") @@ -538,6 +802,9 @@ class MainWindow(QMainWindow): def process_frame(self, frame): """处理摄像头帧""" + if frame is None: + return + self.current_frame = frame.copy() # 先显示原始帧,保证视频流畅播放 @@ -686,48 +953,47 @@ class MainWindow(QMainWindow): self.camera_label.setText(f"显示错误: {str(e)}") def update_results_display(self): - """更新右侧结果显示""" - # 更新车牌数量 - count = len(self.detections) - self.count_label.setText(f"识别到的车牌数量: {count}") + """更新右侧结果显示(使用稳定化结果)""" + print(f"开始更新结果显示,当前模式: {self.current_mode}, 检测数量: {len(self.detections) if self.detections else 0}") - # 准备新的车牌结果列表 - new_plate_results = [] - for i, detection in enumerate(self.detections): - # 矫正车牌图像 + if not self.detections: + self.count_label.setText("识别到的车牌数量: 0") + # 清除显示 + for i in reversed(range(self.results_layout.count())): + child = self.results_layout.itemAt(i).widget() + if child: + child.setParent(None) + self.last_plate_results = [] + print("无检测结果,已清空界面") + return + + # 获取矫正图像和识别文本 + corrected_images = [] + plate_texts = [] + + for detection in self.detections: corrected_image = self.correct_license_plate(detection) + corrected_images.append(corrected_image) - # 获取车牌号,传入车牌类型信息 - plate_number = self.recognize_plate_number(corrected_image, detection['class_name']) - - # 添加到新结果列表 - new_plate_results.append({ - 'id': i + 1, - 'class_name': detection['class_name'], - 'corrected_image': corrected_image, - 'plate_number': plate_number - }) + if corrected_image is not None: + plate_text = self.recognize_plate_number(corrected_image, detection['class_name']) + else: + plate_text = "识别失败" + plate_texts.append(plate_text) - # 比较新旧结果是否相同 - results_changed = False - if len(self.last_plate_results) != len(new_plate_results): - results_changed = True - else: - for i in range(len(new_plate_results)): - if i >= len(self.last_plate_results): - results_changed = True - break - - last_result = self.last_plate_results[i] - new_result = new_plate_results[i] - - # 比较车牌类型和车牌号 - if (last_result['class_name'] != new_result['class_name'] or - last_result['plate_number'] != new_result['plate_number']): - results_changed = True - break + # 使用稳定器获取稳定的识别结果 + stable_results = self.plate_stabilizer.update_and_get_stable_result( + self.detections, corrected_images, plate_texts + ) + + # 更新车牌数量显示 + self.count_label.setText(f"识别到的车牌数量: {len(stable_results)}") + print(f"稳定结果数量: {len(stable_results)}") + + # 检查结果是否发生变化 + results_changed = self.check_results_changed(stable_results) + print(f"结果是否变化: {results_changed}") - # 只有当结果发生变化时才更新显示 if results_changed: # 清除之前的结果 for i in reversed(range(self.results_layout.count())): @@ -735,18 +1001,42 @@ class MainWindow(QMainWindow): if child: child.setParent(None) - # 添加新的结果 - for result in new_plate_results: + # 添加新的稳定结果 + for i, result in enumerate(stable_results): plate_widget = LicensePlateWidget( - result['id'], + i + 1, # 显示序号 result['class_name'], result['corrected_image'], result['plate_number'] ) self.results_layout.addWidget(plate_widget) + print(f"添加车牌widget: {result['plate_number']}") - # 更新存储的上一次结果 - self.last_plate_results = new_plate_results + # 更新存储的结果 + self.last_plate_results = stable_results + + # 清理旧的车牌记录 + current_plate_ids = [result['id'] for result in stable_results] + self.plate_stabilizer.clear_old_plates(current_plate_ids) + print("结果显示更新完成") + + def check_results_changed(self, new_results): + """检查识别结果是否发生变化""" + if len(self.last_plate_results) != len(new_results): + return True + + for i, new_result in enumerate(new_results): + if i >= len(self.last_plate_results): + return True + + old_result = self.last_plate_results[i] + + # 比较关键字段 + if (old_result.get('class_name') != new_result.get('class_name') or + old_result.get('plate_number') != new_result.get('plate_number')): + return True + + return False def correct_license_plate(self, detection): """矫正车牌图像"""