diff --git a/.idea/.gitignore b/.idea/.gitignore
deleted file mode 100644
index 35410ca..0000000
--- a/.idea/.gitignore
+++ /dev/null
@@ -1,8 +0,0 @@
-# 默认忽略的文件
-/shelf/
-/workspace.xml
-# 基于编辑器的 HTTP 客户端请求
-/httpRequests/
-# Datasource local storage ignored files
-/dataSources/
-/dataSources.local.xml
diff --git a/.idea/License_plate_recognition.iml b/.idea/License_plate_recognition.iml
deleted file mode 100644
index fb56de3..0000000
--- a/.idea/License_plate_recognition.iml
+++ /dev/null
@@ -1,12 +0,0 @@
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/.idea/inspectionProfiles/profiles_settings.xml b/.idea/inspectionProfiles/profiles_settings.xml
deleted file mode 100644
index 105ce2d..0000000
--- a/.idea/inspectionProfiles/profiles_settings.xml
+++ /dev/null
@@ -1,6 +0,0 @@
-
-
-
-
-
-
\ No newline at end of file
diff --git a/.idea/misc.xml b/.idea/misc.xml
deleted file mode 100644
index fb9fc56..0000000
--- a/.idea/misc.xml
+++ /dev/null
@@ -1,7 +0,0 @@
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/.idea/modules.xml b/.idea/modules.xml
deleted file mode 100644
index 9b0ce31..0000000
--- a/.idea/modules.xml
+++ /dev/null
@@ -1,8 +0,0 @@
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/.idea/vcs.xml b/.idea/vcs.xml
deleted file mode 100644
index 288b36b..0000000
--- a/.idea/vcs.xml
+++ /dev/null
@@ -1,7 +0,0 @@
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/BUILD.gn b/BUILD.gn
new file mode 100644
index 0000000..d880042
--- /dev/null
+++ b/BUILD.gn
@@ -0,0 +1,20 @@
+static_library("barrier_gate_client") {
+ sources = [
+ # 根据功能划分文件
+ "demo_entry_cmsis.c", # 入口和主线程 源文件
+ "udp_client_test.c", # UDP客户端测试 源文件
+ "oled_ssd1306.c", # oled 显示屏驱动文件
+ "wifi_connecter.c", # wifi
+ "robot_sg90.c", # sg90 舵机
+ "json_parser.c", # JSON解析器
+ "display_helper.c" # 显示辅助文件
+
+ ]
+
+ include_dirs = [
+ "//utils/native/lite/include",
+ "//kernel/liteos_m/kal/cmsis",
+ "//base/iot_hardware/peripheral/interfaces/kits",
+ "//foundation/communication/wifi_lite/interfaces/wifiservice", # HAL接口中的WiFi接口
+ ]
+}
diff --git a/CRNN_part/best_model.pth b/CRNN_part/best_model.pth
deleted file mode 100644
index 4054755..0000000
Binary files a/CRNN_part/best_model.pth and /dev/null differ
diff --git a/CRNN_part/crnn_interface.py b/CRNN_part/crnn_interface.py
deleted file mode 100644
index 5aac245..0000000
--- a/CRNN_part/crnn_interface.py
+++ /dev/null
@@ -1,336 +0,0 @@
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-import numpy as np
-from PIL import Image
-import cv2
-from torchvision import transforms
-import os
-
-# 全局变量
-crnn_model = None
-crnn_decoder = None
-crnn_preprocessor = None
-device = None
-
-class CRNN(nn.Module):
- """CRNN车牌识别模型"""
- def __init__(self, img_height=32, num_classes=68, hidden_size=256):
- super(CRNN, self).__init__()
- self.img_height = img_height
- self.num_classes = num_classes
- self.hidden_size = hidden_size
-
- # CNN特征提取部分 - 7层卷积
- self.cnn = nn.Sequential(
- # 第1层:3->64, 3x3卷积
- nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
- nn.BatchNorm2d(64),
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=2, stride=2),
-
- # 第2层:64->128, 3x3卷积
- nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
- nn.BatchNorm2d(128),
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=2, stride=2),
-
- # 第3层:128->256, 3x3卷积
- nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
- nn.BatchNorm2d(256),
- nn.ReLU(inplace=True),
-
- # 第4层:256->256, 3x3卷积
- nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
- nn.BatchNorm2d(256),
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=(2, 1), stride=(2, 1)),
-
- # 第5层:256->512, 3x3卷积
- nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
- nn.BatchNorm2d(512),
- nn.ReLU(inplace=True),
-
- # 第6层:512->512, 3x3卷积
- nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
- nn.BatchNorm2d(512),
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=(2, 1), stride=(2, 1)),
-
- # 第7层:512->512, 2x2卷积
- nn.Conv2d(512, 512, kernel_size=2, stride=1, padding=0),
- nn.BatchNorm2d(512),
- nn.ReLU(inplace=True),
- )
-
- # RNN序列建模部分 - 2层双向LSTM
- self.rnn = nn.LSTM(
- input_size=512,
- hidden_size=hidden_size,
- num_layers=2,
- batch_first=True,
- bidirectional=True
- )
-
- # 全连接分类层
- self.fc = nn.Linear(hidden_size * 2, num_classes)
-
- def forward(self, x):
- batch_size = x.size(0)
-
- # CNN特征提取
- conv_out = self.cnn(x)
-
- # 重塑为RNN输入格式
- batch_size, channels, height, width = conv_out.size()
- conv_out = conv_out.permute(0, 3, 1, 2)
- conv_out = conv_out.contiguous().view(batch_size, width, channels * height)
-
- # RNN序列建模
- rnn_out, _ = self.rnn(conv_out)
-
- # 全连接分类
- output = self.fc(rnn_out)
-
- # 转换为CTC需要的格式:(width, batch_size, num_classes)
- output = output.permute(1, 0, 2)
-
- return output
-
-class CTCDecoder:
- """CTC解码器"""
- def __init__(self):
- # 定义中国车牌字符集(68个字符)
- self.chars = [
- # 空白字符(CTC需要)
- '',
- # 中文省份简称
- '京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
- '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
- '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新',
- # 字母 A-Z
- 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
- 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
- # 数字 0-9
- '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'
- ]
-
- self.char_to_idx = {char: idx for idx, char in enumerate(self.chars)}
- self.idx_to_char = {idx: char for idx, char in enumerate(self.chars)}
- self.blank_idx = 0
-
- def decode_greedy(self, predictions):
- """贪婪解码"""
- # 获取每个时间步的最大概率索引
- indices = torch.argmax(predictions, dim=1)
-
- # CTC解码:移除重复字符和空白字符
- decoded_chars = []
- prev_idx = -1
-
- for idx in indices:
- idx = idx.item()
- if idx != prev_idx and idx != self.blank_idx:
- if idx < len(self.chars):
- decoded_chars.append(self.chars[idx])
- prev_idx = idx
-
- return ''.join(decoded_chars)
-
- def decode_with_confidence(self, predictions):
- """解码并返回置信度信息"""
- # 应用softmax获得概率
- probs = torch.softmax(predictions, dim=1)
-
- # 贪婪解码
- indices = torch.argmax(probs, dim=1)
- max_probs = torch.max(probs, dim=1)[0]
-
- # CTC解码
- decoded_chars = []
- char_confidences = []
- prev_idx = -1
-
- for i, idx in enumerate(indices):
- idx = idx.item()
- confidence = max_probs[i].item()
-
- if idx != prev_idx and idx != self.blank_idx:
- if idx < len(self.chars):
- decoded_chars.append(self.chars[idx])
- char_confidences.append(confidence)
- prev_idx = idx
-
- text = ''.join(decoded_chars)
- avg_confidence = np.mean(char_confidences) if char_confidences else 0.0
-
- return text, avg_confidence, char_confidences
-
-class LicensePlatePreprocessor:
- """车牌图像预处理器"""
- def __init__(self, target_height=32, target_width=128):
- self.target_height = target_height
- self.target_width = target_width
-
- # 定义图像变换
- self.transform = transforms.Compose([
- transforms.Resize((target_height, target_width)),
- transforms.ToTensor(),
- transforms.Normalize(mean=[0.485, 0.456, 0.406],
- std=[0.229, 0.224, 0.225])
- ])
-
- def preprocess_numpy_array(self, image_array):
- """预处理numpy数组格式的图像"""
- try:
- # 确保图像是RGB格式
- if len(image_array.shape) == 3 and image_array.shape[2] == 3:
- # 如果是BGR格式,转换为RGB
- if image_array.dtype == np.uint8:
- image_array = cv2.cvtColor(image_array, cv2.COLOR_BGR2RGB)
-
- # 转换为PIL图像
- if image_array.dtype != np.uint8:
- image_array = (image_array * 255).astype(np.uint8)
-
- image = Image.fromarray(image_array)
-
- # 应用变换
- tensor = self.transform(image)
-
- # 添加batch维度
- tensor = tensor.unsqueeze(0)
-
- return tensor
-
- except Exception as e:
- print(f"图像预处理失败: {e}")
- return None
-
-def LPRNinitialize_model():
- """
- 初始化CRNN模型
-
- 返回:
- bool: 初始化是否成功
- """
- global crnn_model, crnn_decoder, crnn_preprocessor, device
-
- try:
- # 设置设备
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
- print(f"CRNN使用设备: {device}")
-
- # 初始化组件
- crnn_decoder = CTCDecoder()
- crnn_preprocessor = LicensePlatePreprocessor(target_height=32, target_width=128)
-
- # 创建模型实例
- crnn_model = CRNN(num_classes=len(crnn_decoder.chars), hidden_size=256)
-
- # 加载模型权重
- model_path = os.path.join(os.path.dirname(__file__), 'best_model.pth')
-
- if not os.path.exists(model_path):
- raise FileNotFoundError(f"模型文件不存在: {model_path}")
-
- print(f"正在加载CRNN模型: {model_path}")
-
- # 加载检查点
- checkpoint = torch.load(model_path, map_location=device, weights_only=False)
-
- # 处理不同的模型保存格式
- if isinstance(checkpoint, dict):
- if 'model_state_dict' in checkpoint:
- # 完整检查点格式
- state_dict = checkpoint['model_state_dict']
- print(f"检查点信息:")
- print(f" - 训练轮次: {checkpoint.get('epoch', 'N/A')}")
- print(f" - 最佳验证损失: {checkpoint.get('best_val_loss', 'N/A')}")
- else:
- # 精简模型格式(只包含权重)
- print("加载精简模型(仅权重)")
- state_dict = checkpoint
- else:
- # 直接是状态字典
- state_dict = checkpoint
-
- # 加载权重
- crnn_model.load_state_dict(state_dict)
- crnn_model.to(device)
- crnn_model.eval()
-
- print("CRNN模型初始化完成")
-
- # 统计模型参数
- total_params = sum(p.numel() for p in crnn_model.parameters())
- print(f"CRNN模型参数数量: {total_params:,}")
-
- return True
-
- except Exception as e:
- print(f"CRNN模型初始化失败: {e}")
- import traceback
- traceback.print_exc()
- return False
-
-def LPRNmodel_predict(image_array):
- """
- CRNN车牌号识别接口函数
-
- 参数:
- image_array: numpy数组格式的车牌图像,已经过矫正处理
-
- 返回:
- list: 包含最多8个字符的列表,代表车牌号的每个字符
- 例如: ['京', 'A', '1', '2', '3', '4', '5', ''] (蓝牌7位+占位符)
- ['京', 'A', 'D', '1', '2', '3', '4', '5'] (绿牌8位)
- """
- global crnn_model, crnn_decoder, crnn_preprocessor, device
-
- if crnn_model is None or crnn_decoder is None or crnn_preprocessor is None:
- print("CRNN模型未初始化,请先调用initialize_crnn_model()")
- return ['待', '识', '别', '0', '0', '0', '0', '0']
-
- try:
- # 预处理图像
- input_tensor = crnn_preprocessor.preprocess_numpy_array(image_array)
- if input_tensor is None:
- raise ValueError("图像预处理失败")
-
- input_tensor = input_tensor.to(device)
-
- # 模型推理
- with torch.no_grad():
- outputs = crnn_model(input_tensor) # (seq_len, batch_size, num_classes)
-
- # 移除batch维度
- outputs = outputs.squeeze(1) # (seq_len, num_classes)
-
- # CTC解码
- predicted_text, confidence, char_confidences = crnn_decoder.decode_with_confidence(outputs)
-
- print(f"CRNN识别结果: {predicted_text}, 置信度: {confidence:.3f}")
-
- # 将字符串转换为字符列表
- char_list = list(predicted_text)
-
- # 确保返回至少7个字符,最多8个字符
- if len(char_list) < 7:
- # 如果识别结果少于7个字符,用'0'补齐到7位
- char_list.extend(['0'] * (7 - len(char_list)))
- elif len(char_list) > 8:
- # 如果识别结果多于8个字符,截取前8个
- char_list = char_list[:8]
-
- # 如果是7位,补齐到8位以保持接口一致性(第8位用空字符或占位符)
- if len(char_list) == 7:
- char_list.append('') # 添加空字符作为第8位占位符
-
- return char_list
-
- except Exception as e:
- print(f"CRNN识别失败: {e}")
- import traceback
- traceback.print_exc()
- return ['识', '别', '失', '败', '0', '0', '0', '0']
diff --git a/LPRNET_part/LPRNet__iteration_74000.pth b/LPRNET_part/LPRNet__iteration_74000.pth
deleted file mode 100644
index 6189faa..0000000
Binary files a/LPRNET_part/LPRNet__iteration_74000.pth and /dev/null differ
diff --git a/LPRNET_part/lpr_interface.py b/LPRNET_part/lpr_interface.py
deleted file mode 100644
index 2b688ba..0000000
--- a/LPRNET_part/lpr_interface.py
+++ /dev/null
@@ -1,328 +0,0 @@
-import torch
-import torch.nn as nn
-import cv2
-import numpy as np
-import os
-import sys
-from torch.autograd import Variable
-from PIL import Image
-
-# 添加父目录到路径,以便导入模型和数据加载器
-sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
-
-# LPRNet字符集定义(与训练时保持一致)
-CHARS = ['京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
- '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
- '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新',
- '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
- 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K',
- 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
- 'W', 'X', 'Y', 'Z', 'I', 'O', '-']
-
-CHARS_DICT = {char: i for i, char in enumerate(CHARS)}
-
-# 简化的LPRNet模型定义
-class small_basic_block(nn.Module):
- def __init__(self, ch_in, ch_out):
- super(small_basic_block, self).__init__()
- self.block = nn.Sequential(
- nn.Conv2d(ch_in, ch_out // 4, kernel_size=1),
- nn.ReLU(),
- nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(3, 1), padding=(1, 0)),
- nn.ReLU(),
- nn.Conv2d(ch_out // 4, ch_out // 4, kernel_size=(1, 3), padding=(0, 1)),
- nn.ReLU(),
- nn.Conv2d(ch_out // 4, ch_out, kernel_size=1),
- )
-
- def forward(self, x):
- return self.block(x)
-
-class LPRNet(nn.Module):
- def __init__(self, lpr_max_len, phase, class_num, dropout_rate):
- super(LPRNet, self).__init__()
- self.phase = phase
- self.lpr_max_len = lpr_max_len
- self.class_num = class_num
- self.backbone = nn.Sequential(
- nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1), # 0
- nn.BatchNorm2d(num_features=64),
- nn.ReLU(), # 2
- nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 1, 1)),
- small_basic_block(ch_in=64, ch_out=128), # *** 4 ***
- nn.BatchNorm2d(num_features=128),
- nn.ReLU(), # 6
- nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(2, 1, 2)),
- small_basic_block(ch_in=64, ch_out=256), # 8
- nn.BatchNorm2d(num_features=256),
- nn.ReLU(), # 10
- small_basic_block(ch_in=256, ch_out=256), # *** 11 ***
- nn.BatchNorm2d(num_features=256),
- nn.ReLU(), # 13
- nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(4, 1, 2)), # 14
- nn.Dropout(dropout_rate),
- nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(1, 4), stride=1), # 16
- nn.BatchNorm2d(num_features=256),
- nn.ReLU(), # 18
- nn.Dropout(dropout_rate),
- nn.Conv2d(in_channels=256, out_channels=class_num, kernel_size=(13, 1), stride=1), # 20
- nn.BatchNorm2d(num_features=class_num),
- nn.ReLU(), # 22
- )
- self.container = nn.Sequential(
- nn.Conv2d(in_channels=448+self.class_num, out_channels=self.class_num, kernel_size=(1,1), stride=(1,1)),
- )
-
- def forward(self, x):
- keep_features = list()
- for i, layer in enumerate(self.backbone.children()):
- x = layer(x)
- if i in [2, 6, 13, 22]: # [2, 4, 8, 11, 22]
- keep_features.append(x)
-
- global_context = list()
- for i, f in enumerate(keep_features):
- if i in [0, 1]:
- f = nn.AvgPool2d(kernel_size=5, stride=5)(f)
- if i in [2]:
- f = nn.AvgPool2d(kernel_size=(4, 10), stride=(4, 2))(f)
- f_pow = torch.pow(f, 2)
- f_mean = torch.mean(f_pow)
- f = torch.div(f, f_mean)
- global_context.append(f)
-
- x = torch.cat(global_context, 1)
- x = self.container(x)
- logits = torch.mean(x, dim=2)
-
- return logits
-
-class LPRNetInference:
- def __init__(self, model_path=None, img_size=[94, 24], lpr_max_len=8, dropout_rate=0.5):
- """
- 初始化LPRNet推理类
- Args:
- model_path: 训练好的模型权重文件路径
- img_size: 输入图像尺寸 [width, height]
- lpr_max_len: 车牌最大长度
- dropout_rate: dropout率
- """
- self.img_size = img_size
- self.lpr_max_len = lpr_max_len
- self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
-
- # 设置默认模型路径
- if model_path is None:
- current_dir = os.path.dirname(os.path.abspath(__file__))
- model_path = os.path.join(current_dir, 'LPRNet__iteration_74000.pth')
-
- # 初始化模型
- self.model = LPRNet(lpr_max_len=lpr_max_len, phase=False, class_num=len(CHARS), dropout_rate=dropout_rate)
-
- # 加载模型权重
- if model_path and os.path.exists(model_path):
- print(f"Loading LPRNet model from {model_path}")
- try:
- self.model.load_state_dict(torch.load(model_path, map_location=self.device))
- print("LPRNet模型权重加载成功")
- except Exception as e:
- print(f"Warning: 加载模型权重失败: {e}. 使用随机权重.")
- else:
- print(f"Warning: 模型文件不存在或未指定: {model_path}. 使用随机权重.")
-
- self.model.to(self.device)
- self.model.eval()
-
- print(f"LPRNet模型加载完成,设备: {self.device}")
- print(f"模型参数数量: {sum(p.numel() for p in self.model.parameters()):,}")
-
- def preprocess_image(self, image_array):
- """
- 预处理图像数组 - 使用与训练时相同的预处理方式
- Args:
- image_array: numpy数组格式的图像 (H, W, C)
- Returns:
- preprocessed_image: 预处理后的图像tensor
- """
- if image_array is None:
- raise ValueError("Input image is None")
-
- # 确保图像是numpy数组
- if not isinstance(image_array, np.ndarray):
- raise ValueError("Input must be numpy array")
-
- # 检查图像维度
- if len(image_array.shape) != 3:
- raise ValueError(f"Expected 3D image array, got {len(image_array.shape)}D")
-
- height, width, channels = image_array.shape
- if channels != 3:
- raise ValueError(f"Expected 3 channels, got {channels}")
-
- # 调整图像尺寸到模型要求的尺寸
- if height != self.img_size[1] or width != self.img_size[0]:
- image_array = cv2.resize(image_array, tuple(self.img_size))
-
- # 使用与训练时相同的预处理方式
- image_array = image_array.astype('float32')
- image_array -= 127.5
- image_array *= 0.0078125
- image_array = np.transpose(image_array, (2, 0, 1)) # HWC -> CHW
-
- # 转换为tensor并添加batch维度
- image_tensor = torch.from_numpy(image_array).unsqueeze(0)
-
- return image_tensor
-
- def decode_prediction(self, logits):
- """
- 解码模型预测结果 - 使用正确的CTC贪婪解码
- Args:
- logits: 模型输出的logits [batch_size, num_classes, sequence_length]
- Returns:
- predicted_text: 预测的车牌号码
- """
- # 转换为numpy进行处理
- prebs = logits.cpu().detach().numpy()
- preb = prebs[0, :, :] # 取第一个batch [num_classes, sequence_length]
-
- # 贪婪解码:对每个时间步选择最大概率的字符
- preb_label = []
- for j in range(preb.shape[1]): # 遍历每个时间步
- preb_label.append(np.argmax(preb[:, j], axis=0))
-
- # CTC解码:去除重复字符和空白字符
- no_repeat_blank_label = []
- pre_c = preb_label[0]
-
- # 处理第一个字符
- if pre_c != len(CHARS) - 1: # 不是空白字符
- no_repeat_blank_label.append(pre_c)
-
- # 处理后续字符
- for c in preb_label:
- if (pre_c == c) or (c == len(CHARS) - 1): # 重复字符或空白字符
- if c == len(CHARS) - 1:
- pre_c = c
- continue
- no_repeat_blank_label.append(c)
- pre_c = c
-
- # 转换为字符
- decoded_chars = [CHARS[idx] for idx in no_repeat_blank_label]
- return ''.join(decoded_chars)
-
- def predict(self, image_array):
- """
- 预测单张图像的车牌号码
- Args:
- image_array: numpy数组格式的图像
- Returns:
- prediction: 预测的车牌号码
- confidence: 预测置信度
- """
- try:
- # 预处理图像
- image = self.preprocess_image(image_array)
- if image is None:
- return None, 0.0
-
- image = image.to(self.device)
-
- # 模型推理
- with torch.no_grad():
- logits = self.model(image)
- # logits shape: [batch_size, class_num, sequence_length]
-
- # 计算置信度(使用softmax后的最大概率平均值)
- probs = torch.softmax(logits, dim=1)
- max_probs = torch.max(probs, dim=1)[0]
- confidence = torch.mean(max_probs).item()
-
- # 解码预测结果
- prediction = self.decode_prediction(logits)
-
- return prediction, confidence
-
- except Exception as e:
- print(f"预测图像失败: {e}")
- return None, 0.0
-
-# 全局变量
-lpr_model = None
-
-def LPRNinitialize_model():
- """
- 初始化LPRNet模型
-
- 返回:
- bool: 初始化是否成功
- """
- global lpr_model
-
- try:
- # 模型权重文件路径
- model_path = os.path.join(os.path.dirname(__file__), 'LPRNet__iteration_74000.pth')
-
- # 创建推理对象
- lpr_model = LPRNetInference(model_path)
-
- print("LPRNet模型初始化完成")
- return True
-
- except Exception as e:
- print(f"LPRNet模型初始化失败: {e}")
- import traceback
- traceback.print_exc()
- return False
-
-def LPRNmodel_predict(image_array):
- """
- LPRNet车牌号识别接口函数
-
- 参数:
- image_array: numpy数组格式的车牌图像,已经过矫正处理
-
- 返回:
- list: 包含最多8个字符的列表,代表车牌号的每个字符
- 例如: ['京', 'A', '1', '2', '3', '4', '5'] (蓝牌7位)
- ['京', 'A', 'D', '1', '2', '3', '4', '5'] (绿牌8位)
- """
- global lpr_model
-
- if lpr_model is None:
- print("LPRNet模型未初始化,请先调用LPRNinitialize_model()")
- return ['待', '识', '别', '0', '0', '0', '0', '0']
-
- try:
- # 预测车牌号
- predicted_text, confidence = lpr_model.predict(image_array)
-
- if predicted_text is None:
- print("LPRNet识别失败")
- return ['识', '别', '失', '败', '0', '0', '0', '0']
-
- print(f"LPRNet识别结果: {predicted_text}, 置信度: {confidence:.3f}")
-
- # 将字符串转换为字符列表
- char_list = list(predicted_text)
-
- # 确保返回至少7个字符,最多8个字符
- if len(char_list) < 7:
- # 如果识别结果少于7个字符,用'0'补齐到7位
- char_list.extend(['0'] * (7 - len(char_list)))
- elif len(char_list) > 8:
- # 如果识别结果多于8个字符,截取前8个
- char_list = char_list[:8]
-
- # 如果是7位,补齐到8位以保持接口一致性(第8位用空字符或占位符)
- if len(char_list) == 7:
- char_list.append('') # 添加空字符作为第8位占位符
-
- return char_list
-
- except Exception as e:
- print(f"LPRNet识别失败: {e}")
- import traceback
- traceback.print_exc()
- return ['识', '别', '失', '败', '0', '0', '0', '0']
\ No newline at end of file
diff --git a/LPRNET_part/吉CF18040.jpg b/LPRNET_part/吉CF18040.jpg
deleted file mode 100644
index 29d94e6..0000000
Binary files a/LPRNET_part/吉CF18040.jpg and /dev/null differ
diff --git a/LPRNET_part/藏A0DBN8.jpg b/LPRNET_part/藏A0DBN8.jpg
deleted file mode 100644
index 32ddef3..0000000
Binary files a/LPRNET_part/藏A0DBN8.jpg and /dev/null differ
diff --git a/OCR_part/ocr_interface.py b/OCR_part/ocr_interface.py
deleted file mode 100644
index b98c5b8..0000000
--- a/OCR_part/ocr_interface.py
+++ /dev/null
@@ -1,66 +0,0 @@
-import numpy as np
-from paddleocr import TextRecognition
-import cv2
-
-class OCRProcessor:
- def __init__(self):
- self.model = TextRecognition(model_name="PP-OCRv5_server_rec")
- print("OCR模型初始化完成(占位)")
-
- def predict(self, image_array):
- # 保持原有模型调用方式
- output = self.model.predict(input=image_array)
- # 结构化输出结果
- results = output[0]["rec_text"]
- placeholder_result = results.split(',')
- return placeholder_result
-
-# 保留原有函数接口
-_processor = OCRProcessor()
-
-def LPRNinitialize_model():
- return _processor
-
-def LPRNmodel_predict(image_array):
- """
- OCR车牌号识别接口函数
-
- 参数:
- image_array: numpy数组格式的车牌图像,已经过矫正处理
-
- 返回:
- list: 包含最多8个字符的列表,代表车牌号的每个字符
- 例如: ['京', 'A', '1', '2', '3', '4', '5', ''] (蓝牌7位+占位符)
- ['京', 'A', 'D', '1', '2', '3', '4', '5'] (绿牌8位)
- """
- # 获取原始预测结果
- raw_result = _processor.predict(image_array)
-
- # 将结果合并为字符串(如果是列表的话)
- if isinstance(raw_result, list):
- result_str = ''.join(raw_result)
- else:
- result_str = str(raw_result)
-
- # 过滤掉'·'字符
- filtered_str = result_str.replace('·', '')
-
- # 转换为字符列表
- char_list = list(filtered_str)
-
- # 确保返回至少7个字符,最多8个字符
- if len(char_list) < 7:
- # 如果识别结果少于7个字符,用'0'补齐到7位
- char_list.extend(['0'] * (7 - len(char_list)))
- elif len(char_list) > 8:
- # 如果识别结果多于8个字符,截取前8个
- char_list = char_list[:8]
-
- # 如果是7位,补齐到8位以保持接口一致性(第8位用空字符或占位符)
- if len(char_list) == 7:
- char_list.append('') # 添加空字符作为第8位占位符
-
- return char_list
-
-
-
diff --git a/README.md b/README.md
deleted file mode 100644
index 40b4614..0000000
--- a/README.md
+++ /dev/null
@@ -1,172 +0,0 @@
-# 车牌识别系统
-
-基于YOLO11 Pose模型的实时车牌检测与识别系统,支持蓝牌和绿牌的检测、四角点定位、透视矫正和车牌号识别。
-
-## 项目结构
-
-```
-License_plate_recognition/
-├── main.py # 主程序入口,PyQt界面
-├── requirements.txt # 依赖包列表
-├── README.md # 项目说明文档
-├── yolopart/ # YOLO检测模块
-│ ├── detector.py # YOLO检测器类
-│ └── yolo11s-pose42.pt # YOLO pose模型文件
-├── OCR_part/ # OCR识别模块
-│ └── ocr_interface.py # OCR接口(占位)
-├── CRNN_part/ # CRNN识别模块
-│ └── crnn_interface.py # CRNN接口(占位)
-└── LPRNET_part/ # LPRNet识别模块
- ├── lpr_interface.py # LPRNet接口(已完成)
- └── LPRNet__iteration_74000.pth # LPRNet模型权重文件
-```
-
-## 功能特性
-
-### 1. 实时车牌检测
-- 基于YOLO11 Pose模型进行车牌检测
-- 支持蓝牌(类别0)和绿牌(类别1)识别
-- 实时摄像头画面处理
-
-### 2. 四角点定位
-- 检测车牌的四个角点:right_bottom, left_bottom, left_top, right_top
-- 只有检测到完整四个角点的车牌才进行后续处理
-- 用黄色线条连接四个角点显示检测结果
-
-### 3. 透视矫正
-- 使用四个角点进行透视变换
-- 将倾斜的车牌矫正为标准矩形
-- 输出标准尺寸的车牌图像供识别使用
-
-### 4. 多种识别方案
-- 支持OCR、CRNN和LPRNet三种车牌识别方法
-- LPRNet模型准确率高达98%
-- 模块化接口设计,便于切换不同识别算法
-
-### 5. PyQt界面
-- 左侧:实时摄像头画面显示
-- 右侧:检测结果展示区域
- - 顶部显示识别到的车牌数量
- - 每行显示:车牌类型、矫正后图像、车牌号
-- 美观的现代化界面设计
-
-### 6. 模块化设计
-- yolopart:负责车牌定位和矫正
-- OCR_part/CRNN_part/LPRNET_part:负责车牌号识别
-- 各模块独立,便于维护和扩展
-
-## 安装和使用
-
-### 1. 环境要求
-- Python 3.7+
-- Windows/Linux/macOS
-- 摄像头设备
-
-### 2. 安装依赖
-```bash
-pip install -r requirements.txt
-```
-
-### 3. 模型文件
-确保 `yolopart/yolo11s-pose42.pt` 模型文件存在。这是一个YOLO11 Pose模型,专门训练用于车牌的四角点检测。
-
-### 4. 运行程序
-```bash
-python main.py
-```
-
-### 5. 选择识别模块
-在 `main.py` 中修改导入语句来选择不同的识别方案:
-
-```python
-# 使用LPRNet(推荐,准确率98%)
-from LPRNET_part.lpr_interface import LPRNmodel_predict, LPRNinitialize_model
-
-# 使用OCR
-from OCR_part.ocr_interface import LPRNmodel_predict, LPRNinitialize_model
-
-# 使用CRNN
-from CRNN_part.crnn_interface import LPRNmodel_predict, LPRNinitialize_model
-```
-
-### 6. 使用说明
-1. 点击"启动摄像头"按钮开始检测
-2. 将车牌对准摄像头
-3. 系统会自动检测车牌并显示:
- - 检测框和角点连线
- - 右侧显示车牌类型、矫正图像和车牌号
-4. 点击"停止摄像头"结束检测
-
-## 模型输出格式
-
-YOLO Pose模型输出包含:
-- **检测框**:车牌的边界框坐标
-- **类别**:0=蓝牌,1=绿牌
-- **置信度**:检测置信度分数
-- **关键点**:四个角点坐标
- - right_bottom:右下角
- - left_bottom:左下角
- - left_top:左上角
- - right_top:右上角
-
-## 接口说明
-
-### 车牌识别接口
-
-项目为OCR、CRNN和LPRNet识别模块提供了标准接口:
-
-```python
-# 接口函数名(导入所需模块,每个模块统一函数名)
-
-# 初始化
-from 对应模块 import LPRNinitialize_model
-LPRNinitialize_model()
-
-# 预测主函数
-from 对应模块 import LPRNmodel_predict
-result = LPRNmodel_predict(corrected_image) # 返回7个字符的列表
-```
-
-### 输入参数
-- `corrected_image`:numpy数组格式的矫正后车牌图像
-
-### 返回值
-- 长度为7的字符列表,包含车牌号的每个字符
-- 例如:`['京', 'A', '1', '2', '3', '4', '5']`
-
-### LPRNet模块特性
-
-- **高准确率**: 模型准确率高达98%
-- **快速推理**: 基于深度学习的端到端识别
-- **CTC解码**: 使用CTC(Connectionist Temporal Classification)解码算法
-- **支持中文**: 完整支持中文省份简称和字母数字组合
-- **模型权重**: 使用预训练的LPRNet__iteration_74000.pth权重文件
-
-## 开发说明
-
-### 添加新的识别算法
-1. 在对应目录(OCR_part或CRNN_part)实现识别函数
-2. 确保函数签名与接口一致
-3. 在main.py中导入对应模块即可
-
-### 自定义模型
-1. 替换 `yolopart/yolo11s-pose42.pt` 文件
-2. 确保新模型输出格式与现有接口兼容
-3. 根据需要调整类别名称和数量
-
-### 调试模式
-在代码中设置调试标志可以输出更多信息:
-```python
-# 在detector.py中设置verbose=True
-results = self.model(image, conf=conf_threshold, verbose=True)
-```
-
-## 扩展功能
-
-系统设计支持以下扩展:
-- 多摄像头支持
-- 批量图像处理
-- 检测结果保存
-- 网络API接口
-- 数据库集成
-- 性能统计和分析
\ No newline at end of file
diff --git a/chinese_char_map.h b/chinese_char_map.h
new file mode 100644
index 0000000..6df0034
--- /dev/null
+++ b/chinese_char_map.h
@@ -0,0 +1,56 @@
+#ifndef CHINESE_CHAR_MAP_H
+#define CHINESE_CHAR_MAP_H
+
+#include
+
+// 中文字符映射结构体
+typedef struct {
+ const char* utf8_char; // UTF-8编码的中文字符
+ uint8_t font_index; // 在fonts3数组中的索引
+} ChineseCharMap;
+
+// 中文字符映射表 - 根据fonts3数组中的字符顺序
+static const ChineseCharMap chinese_char_map[] = {
+ {"京", 0}, // ID:0 - 北京
+ {"沪", 1}, // ID:1 - 上海
+ {"津", 2}, // ID:2 - 天津
+ {"渝", 3}, // ID:3 - 重庆
+ {"冀", 4}, // ID:4 - 河北
+ {"晋", 5}, // ID:5 - 山西
+ {"蒙", 6}, // ID:6 - 内蒙古
+ {"辽", 7}, // ID:7 - 辽宁
+ {"吉", 8}, // ID:8 - 吉林
+ {"黑", 9}, // ID:9 - 黑龙江
+ {"苏", 10}, // ID:10 - 江苏
+ {"浙", 11}, // ID:11 - 浙江
+ {"皖", 12}, // ID:12 - 安徽
+ {"闽", 13}, // ID:13 - 福建
+ {"赣", 14}, // ID:14 - 江西
+ {"鲁", 15}, // ID:15 - 山东
+ {"豫", 16}, // ID:16 - 河南
+ {"鄂", 17}, // ID:17 - 湖北
+ {"湘", 18}, // ID:18 - 湖南
+ {"粤", 19}, // ID:19 - 广东
+ {"桂", 20}, // ID:20 - 广西
+ {"琼", 21}, // ID:21 - 海南
+ {"川", 22}, // ID:22 - 四川
+ {"贵", 23}, // ID:23 - 贵州
+ {"云", 24}, // ID:24 - 云南
+ {"藏", 25}, // ID:25 - 西藏
+ {"陕", 26}, // ID:26 - 陕西
+ {"甘", 27}, // ID:27 - 甘肃
+ {"青", 28}, // ID:28 - 青海
+ {"宁", 29}, // ID:29 - 宁夏
+ {"新", 30}, // ID:30 - 新疆
+ {"禁", 31}, // ID:31 - 禁止
+ {"通", 32}, // ID:32 - 通行
+ {"行", 33} // ID:33 - 行驶
+};
+
+// 映射表大小
+#define CHINESE_CHAR_MAP_SIZE (sizeof(chinese_char_map) / sizeof(ChineseCharMap))
+
+// 函数声明
+int FindChineseCharIndex(const char* utf8_char);
+
+#endif // CHINESE_CHAR_MAP_H
\ No newline at end of file
diff --git a/demo_entry_cmsis.c b/demo_entry_cmsis.c
new file mode 100644
index 0000000..cdbc809
--- /dev/null
+++ b/demo_entry_cmsis.c
@@ -0,0 +1,509 @@
+#include // 标准输入输出
+#include // POSIX标准接口
+#include // 字符串处理(操作字符数组)
+
+#include "ohos_init.h" // 用于初始化服务(services)和功能(features)
+#include "cmsis_os2.h" // CMSIS-RTOS API V2
+
+#include "wifi_connecter.h" // easy wifi (station模式)
+#include "oled_ssd1306.h" // OLED驱动接口
+#include "json_parser.h"
+#include "display_helper.h" // 显示辅助函数
+#include "robot_sg90.h" // 舵机控制接口
+#include "iot_gpio.h"
+#include "hi_io.h"
+#include "hi_time.h"
+#include "iot_gpio.h"
+#include "hi_adc.h"
+#include "iot_errno.h"
+#if 1
+// 定义一个宏,用于标识SSID。请根据实际情况修改
+#define PARAM_HOTSPOT_SSID "tarikPura"
+
+// 定义一个宏,用于标识密码。请根据实际情况修改
+#define PARAM_HOTSPOT_PSK "66668888"
+#elif
+#define PARAM_HOTSPOT_SSID "DYJY"
+
+// 定义一个宏,用于标识密码。请根据实际情况修改
+#define PARAM_HOTSPOT_PSK "12345678"
+#endif
+// 定义一个宏,用于标识加密方式
+#define PARAM_HOTSPOT_TYPE WIFI_SEC_TYPE_PSK
+
+// 定义一个宏,用于标识UDP服务器IP地址。请根据实际情况修改
+#define PARAM_SERVER_ADDR "192.168.43.137"
+
+#define GPIO5 5
+#define ADC_TEST_LENGTH (20)
+#define VLT_MIN (100)
+#define KEY_INTERRUPT_PROTECT_TIME (30)
+
+unsigned short g_adc_buf[ADC_TEST_LENGTH] = { 0 };
+unsigned short g_gpio5_adc_buf[ADC_TEST_LENGTH] = { 0 };
+unsigned int g_gpio5_tick = 0;
+
+int control_flag = 0;
+extern char response[128];
+extern JsonCommand g_current_command; // 外部声明JSON命令变量
+
+// 舵机控制函数声明
+extern void servo_rotate_clockwise_90(void);
+extern void servo_rotate_counter_clockwise_90(void);
+extern void regress_middle(void);
+
+uint8_t fonts3[] = {
+
+ /*-- ID:0,字符:"京",ASCII编码:BEA9,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x08,0x08,0x08,0xe8,0x28,0x28,0x29,0x2e,0x28,0x28,0x28,0xf8,0x28,0x0c,0x08,0x00,
+ 0x00,0x00,0x40,0x23,0x1a,0x42,0x82,0x7e,0x02,0x0a,0x12,0x33,0x60,0x00,0x00,0x00,
+
+ /*-- ID:1,字符:"沪",ASCII编码:BBA6,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x10,0x22,0x64,0x0c,0x80,0x00,0xf8,0x88,0x89,0x8a,0x8e,0x88,0x88,0xfc,0x08,0x00,
+ 0x04,0x04,0xfc,0x03,0x80,0x60,0x1f,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00,
+
+ /*-- ID:2,字符:"津",ASCII编码:BDF2,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x20,0x42,0xc4,0x0c,0x10,0x54,0x54,0x54,0xff,0x54,0x54,0x54,0x7e,0x14,0x10,0x00,
+ 0x04,0x04,0xfc,0x02,0x11,0x12,0x12,0x12,0xff,0x12,0x12,0x13,0x1a,0x10,0x00,0x00,
+
+ /*-- ID:3,字符:"渝",ASCII编码:D3E5,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x10,0x22,0x64,0x0c,0xa0,0xd0,0x48,0x54,0xd2,0x13,0x94,0x08,0xd0,0x30,0x10,0x00,
+ 0x04,0x04,0xfe,0x01,0x00,0xff,0x12,0x92,0xff,0x00,0x5f,0x80,0x7f,0x00,0x00,0x00,
+
+ /*-- ID:4,字符:"冀",ASCII编码:BCBD,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x08,0x0a,0xea,0xaa,0xaa,0xaa,0xaf,0xe0,0xaf,0xaa,0xaa,0xaa,0xfa,0x28,0x0c,0x00,
+ 0x20,0xa0,0xab,0x6a,0x2a,0x3e,0x2a,0x2b,0x2a,0x3e,0x2a,0x6a,0xab,0xa0,0x20,0x00,
+
+ /*-- ID:5,字符:"晋",ASCII编码:BDFA,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x40,0x42,0x4a,0x52,0x42,0x7e,0x42,0x42,0x42,0x7e,0x42,0xd2,0x4b,0x62,0x40,0x00,
+ 0x00,0x00,0x00,0xff,0x49,0x49,0x49,0x49,0x49,0x49,0x49,0xff,0x01,0x00,0x00,0x00,
+
+ /*-- ID:6,字符:"蒙",ASCII编码:C3C9,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x20,0x9a,0x8a,0x8a,0xaa,0xaf,0xaa,0xaa,0xaa,0xaf,0xaa,0x8a,0x8b,0xaa,0x18,0x00,
+ 0x00,0x50,0x52,0x2a,0x2a,0x15,0x4b,0x86,0x7c,0x04,0x0a,0x13,0x20,0x60,0x20,0x00,
+
+ /*-- ID:7,字符:"辽",ASCII编码:C1C9,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x00,0x21,0x22,0xe6,0x00,0x02,0x02,0x02,0x02,0xf2,0x12,0x0a,0x06,0x02,0x00,0x00,
+ 0x00,0x40,0x20,0x1f,0x20,0x40,0x40,0x48,0x50,0x4f,0x40,0x40,0x40,0x60,0x20,0x00,
+
+ /*-- ID:8,字符:"吉",ASCII编码:BCAA,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x08,0x08,0x88,0x88,0x88,0x88,0x88,0xff,0x88,0x88,0x88,0xc8,0x88,0x0c,0x08,0x00,
+ 0x00,0x00,0x00,0xfc,0x44,0x44,0x44,0x44,0x44,0x44,0x44,0xfe,0x04,0x00,0x00,0x00,
+
+ /*-- ID:9,字符:"黑",ASCII编码:BADA,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x00,0x00,0xfe,0x8a,0x92,0xb2,0x82,0xfe,0x82,0xa2,0x9a,0x92,0xff,0x02,0x00,0x00,
+ 0x08,0x8a,0x6a,0x0a,0x2a,0xca,0x0a,0x0f,0x2a,0xca,0x0a,0x2a,0x4a,0xca,0x08,0x00,
+
+ /*-- ID:10,字符:"苏",ASCII编码:CBD5,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x04,0x04,0x44,0x44,0x5f,0x44,0xf4,0x44,0x44,0x44,0x5f,0xe4,0x44,0x06,0x04,0x00,
+ 0x00,0x88,0x46,0x20,0x10,0x0c,0x03,0x00,0x00,0x40,0x80,0x7f,0x02,0x04,0x0c,0x00,
+
+ /*-- ID:11,字符:"浙",ASCII编码:D5E3,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x10,0x22,0x64,0x0c,0x90,0x10,0xff,0x10,0x90,0xfc,0x44,0x44,0xc2,0x62,0x40,0x00,
+ 0x04,0x04,0xfe,0x01,0x42,0x82,0x7f,0x41,0x20,0x1f,0x00,0x00,0xff,0x00,0x00,0x00,
+
+ /*-- ID:12,字符:"皖",ASCII编码:CDEE,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x00,0xf8,0x8c,0x8b,0x88,0xf8,0x10,0x0c,0x24,0x25,0x26,0x34,0x24,0x94,0x0c,0x00,
+ 0x00,0x3f,0x10,0x10,0x10,0xbf,0x41,0x31,0x0f,0x01,0x01,0x3f,0x41,0x41,0x71,0x00,
+
+ /*-- ID:13,字符:"闽",ASCII编码:C3F6,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x00,0xfc,0x01,0x02,0xe6,0x20,0x22,0xfa,0x22,0x22,0xf2,0x22,0x02,0xff,0x02,0x00,
+ 0x00,0xff,0x00,0x20,0x27,0x22,0x22,0x3f,0x12,0x12,0x1b,0x70,0x80,0x7f,0x00,0x00,
+
+ /*-- ID:14,字符:"赣",ASCII编码:B8D3,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x12,0xd6,0x5a,0x53,0x5a,0xd6,0x12,0x28,0x64,0x57,0xca,0x56,0x52,0x20,0x20,0x00,
+ 0x10,0x17,0x15,0xfd,0x15,0x17,0x10,0x81,0xbd,0x45,0x35,0x45,0x7d,0x81,0x00,0x00,
+
+ /*-- ID:15,字符:"鲁",ASCII编码:C2B3,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x10,0x10,0xf8,0xac,0xaa,0xab,0xaa,0xfa,0xae,0xaa,0xaa,0xa8,0xfc,0x08,0x00,0x00,
+ 0x02,0x02,0x02,0xfa,0xaa,0xaa,0xaa,0xaa,0xaa,0xaa,0xaa,0xfe,0x0a,0x02,0x02,0x00,
+
+ /*-- ID:16,字符:"豫",ASCII编码:D4A5,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x40,0x42,0x52,0xe2,0x5a,0xc6,0x50,0xf8,0x94,0xd3,0xba,0x96,0x92,0xf8,0x10,0x00,
+ 0x00,0x40,0x80,0x7f,0x00,0x10,0x54,0x4a,0x25,0x92,0xfc,0x0c,0x12,0x61,0x20,0x00,
+
+ /*-- ID:17,字符:"鄂",ASCII编码:B6F5,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x00,0x5e,0x52,0x5e,0x40,0x5e,0x52,0x5e,0x00,0xfe,0x02,0x42,0xb2,0x0e,0x00,0x00,
+ 0x01,0x01,0x0d,0x4b,0x89,0x89,0x7d,0x09,0x01,0xff,0x08,0x10,0x20,0x11,0x0e,0x00,
+
+ /*-- ID:18,字符:"湘",ASCII编码:CFE6,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x10,0x22,0x64,0x0c,0x10,0xd0,0xff,0x90,0x10,0xfc,0x44,0x44,0x44,0xfe,0x04,0x00,
+ 0x04,0x04,0xfe,0x05,0x03,0x00,0xff,0x00,0x01,0xff,0x44,0x44,0x44,0xff,0x00,0x00,
+
+ /*-- ID:19,字符:"粤",ASCII编码:D4C1,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x00,0x00,0x00,0xfe,0x92,0xd6,0x93,0xfe,0x92,0xd6,0x92,0xff,0x02,0x00,0x00,0x00,
+ 0x02,0x02,0x02,0x02,0x0a,0x0e,0x0a,0x0a,0x4a,0x8a,0x4a,0x3a,0x02,0x03,0x02,0x00,
+
+ /*-- ID:20,字符:"桂",ASCII编码:B9F0,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x10,0x10,0xd0,0xff,0x90,0x50,0x48,0x48,0x48,0xff,0x48,0x48,0x4c,0x68,0x40,0x00,
+ 0x04,0x03,0x00,0xff,0x40,0x41,0x44,0x44,0x44,0x7f,0x44,0x44,0x46,0x64,0x40,0x00,
+
+ /*-- ID:21,字符:"琼",ASCII编码:C7ED,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x44,0x44,0xfc,0x46,0x44,0x08,0xe8,0x28,0x29,0x2a,0x28,0x28,0xf8,0x2c,0x08,0x00,
+ 0x10,0x30,0x1f,0x08,0x08,0x20,0x13,0x5a,0x82,0x7e,0x02,0x0a,0x13,0x30,0x00,0x00,
+
+ /*-- ID:22,字符:"川",ASCII编码:B4A8,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x00,0x00,0x00,0xfe,0x00,0x00,0x00,0x00,0xfc,0x00,0x00,0x00,0x00,0xff,0x00,0x00,
+ 0x00,0x40,0x20,0x1f,0x00,0x00,0x00,0x00,0x1f,0x00,0x00,0x00,0x00,0xff,0x00,0x00,
+
+ /*-- ID:23,字符:"贵",ASCII编码:B9F3,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x40,0x40,0x5c,0x54,0x54,0x54,0x54,0x7f,0x54,0x54,0x54,0xd4,0x5e,0x44,0x40,0x00,
+ 0x00,0x00,0x80,0x9f,0x41,0x41,0x21,0x1d,0x21,0x21,0x41,0x5f,0x81,0x00,0x00,0x00,
+
+ /*-- ID:24,字符:"云",ASCII编码:D4C6,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x40,0x40,0x40,0x44,0x44,0x44,0xc4,0x44,0x44,0x44,0x46,0x44,0x40,0x60,0x40,0x00,
+ 0x00,0x00,0x40,0x60,0x58,0x46,0x41,0x40,0x40,0x40,0x50,0x60,0xc0,0x00,0x00,0x00,
+
+ /*-- ID:25,字符:"藏",ASCII编码:B2D8,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x02,0xf2,0x82,0xf2,0x12,0xdf,0x52,0xd2,0x5f,0x12,0xfe,0x12,0x16,0x9b,0x12,0x00,
+ 0x90,0x4e,0x22,0x1f,0x00,0x7f,0x25,0x3d,0xa7,0x40,0x2f,0x30,0x4c,0x83,0xe0,0x00,
+
+ /*-- ID:26,字符:"陕",ASCII编码:C9C2,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x00,0xfe,0x22,0x5a,0x86,0x08,0x28,0x48,0x08,0xff,0x08,0x48,0x2c,0x88,0x00,0x00,
+ 0x00,0xff,0x04,0x08,0x87,0x41,0x21,0x11,0x0d,0x03,0x0d,0x11,0x61,0xc1,0x41,0x00,
+
+ /*-- ID:27,字符:"甘",ASCII编码:B8CA,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x10,0x10,0x10,0x10,0xff,0x10,0x10,0x10,0x10,0x10,0xff,0x10,0x10,0x18,0x10,0x00,
+ 0x00,0x00,0x00,0x00,0xff,0x42,0x42,0x42,0x42,0x42,0xff,0x00,0x00,0x00,0x00,0x00,
+
+ /*-- ID:28,字符:"青",ASCII编码:C7E0,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x40,0x44,0x54,0x54,0x54,0x54,0x54,0x7f,0x54,0x54,0x54,0xd4,0x56,0x44,0x40,0x00,
+ 0x00,0x00,0x00,0xff,0x15,0x15,0x15,0x15,0x15,0x55,0x95,0x7f,0x01,0x00,0x00,0x00,
+
+ /*-- ID:29,字符:"宁",ASCII编码:C4FE,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x50,0x4c,0x44,0x44,0x44,0x44,0x45,0xc6,0x44,0x44,0x44,0x44,0x44,0x54,0x4c,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x40,0x80,0x7f,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ /*-- ID:30,字符:"新",ASCII编码:D0C2,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x40,0x44,0x54,0x65,0xc6,0x64,0xd6,0x44,0x40,0xfc,0x44,0x42,0xc3,0x62,0x40,0x00,
+ 0x20,0x11,0x49,0x81,0x7f,0x01,0x05,0x29,0x18,0x07,0x00,0x00,0xff,0x00,0x00,0x00,
+
+ /*-- ID:31,字符:"禁",ASCII编码:BDFB,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x40,0x24,0x14,0x0c,0x7f,0x14,0x24,0x20,0x14,0x0c,0x7f,0x0c,0x16,0x24,0x40,0x00,
+ 0x04,0x04,0x45,0x25,0x15,0x45,0x85,0x7d,0x05,0x05,0x15,0x25,0x65,0x04,0x04,0x00,
+
+ /*-- ID:32,字符:"通",ASCII编码:CDA8,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x40,0x42,0x44,0xcc,0x00,0x00,0xf1,0x91,0x95,0xf9,0x95,0x93,0xf9,0x10,0x00,0x00,
+ 0x00,0x40,0x20,0x1f,0x20,0x40,0xbf,0x84,0x84,0xbf,0x94,0xa4,0x9f,0xc0,0x40,0x00,
+
+ /*-- ID:33,字符:"行",ASCII编码:D0D0,对应字:宽x高=16x16,画布:宽W=16 高H=16,共32字节*/
+ 0x00,0x10,0x88,0xc4,0x23,0x40,0x42,0x42,0x42,0x42,0x42,0xc2,0x43,0x62,0x40,0x00,
+ 0x02,0x01,0x00,0xff,0x00,0x00,0x00,0x00,0x00,0x40,0x80,0x7f,0x00,0x00,0x00,0x00};
+
+// 定义一个宏,用于标识UDP服务器端口
+#define PARAM_SERVER_PORT 8081
+
+void switch_init(void)
+{
+ IoTGpioInit(5);
+ hi_io_set_func(5, 0);
+ IoTGpioSetDir(5, IOT_GPIO_DIR_IN);
+ hi_io_set_pull(5, 1);
+}
+
+//按键中断响应函数
+void gpio5_isr_func_mode(void)
+{
+ printf("gpio5_isr_func_mode start\n");
+ unsigned int tick_interval = 0;
+ unsigned int current_gpio5_tick = 0;
+
+ current_gpio5_tick = hi_get_tick();
+ tick_interval = current_gpio5_tick - g_gpio5_tick;
+
+ if (tick_interval < KEY_INTERRUPT_PROTECT_TIME) {
+ return NULL;
+ }
+ g_gpio5_tick = current_gpio5_tick;
+ control_flag = !control_flag;
+
+}
+
+unsigned char get_gpio5_voltage(void *param)
+{
+ int i;
+ unsigned short data;
+ unsigned int ret;
+ unsigned short vlt;
+ float voltage;
+ float vlt_max = 0;
+ float vlt_min = VLT_MIN;
+
+ hi_unref_param(param);
+ memset_s(g_gpio5_adc_buf, sizeof(g_gpio5_adc_buf), 0x0, sizeof(g_gpio5_adc_buf));
+ for (i = 0; i < ADC_TEST_LENGTH; i++) {
+ ret = hi_adc_read(HI_ADC_CHANNEL_2, &data, HI_ADC_EQU_MODEL_4, HI_ADC_CUR_BAIS_DEFAULT, 0xF0);
+ //ADC_Channal_2 自动识别模式 CNcomment:4次平均算法模式 CNend */
+ if (ret != IOT_SUCCESS) {
+ printf("ADC Read Fail\n");
+ return NULL;
+ }
+ g_gpio5_adc_buf[i] = data;
+ }
+
+ for (i = 0; i < ADC_TEST_LENGTH; i++) {
+ vlt = g_gpio5_adc_buf[i];
+ voltage = (float)vlt * 1.8 * 4 / 4096.0;
+ /* vlt * 1.8* 4 / 4096.0为将码字转换为电压 */
+ vlt_max = (voltage > vlt_max) ? voltage : vlt_max;
+ vlt_min = (voltage < vlt_min) ? voltage : vlt_min;
+ }
+ printf("vlt_max is %f\r\n", vlt_max);
+ if (vlt_max > 0.6 && vlt_max < 1.0) {
+ gpio5_isr_func_mode();
+ }
+}
+
+//按键中断
+void interrupt_monitor(void)
+{
+ unsigned int ret = 0;
+ /*gpio5 switch2 mode*/
+ g_gpio5_tick = hi_get_tick();
+ ret = IoTGpioRegisterIsrFunc(GPIO5, IOT_INT_TYPE_EDGE, IOT_GPIO_EDGE_FALL_LEVEL_LOW, get_gpio5_voltage, NULL);
+ if (ret == IOT_SUCCESS) {
+ printf(" register gpio5\r\n");
+ }
+}
+void OledShowChinese3(uint8_t x, uint8_t y, uint8_t idx)
+{
+ // 控制循环
+ uint8_t t;
+
+ // 显示汉字的上半部分
+ OledSetPosition(x, y);
+ for (t = 0; t < 16; t++)
+ {
+ WriteData(fonts3[32 * idx + t]);
+ }
+
+ // 显示汉字的下半部分
+ OledSetPosition(x, y + 1);
+ for (t = 16; t < 32; t++)
+ {
+ WriteData(fonts3[32 * idx + t]);
+ }
+}
+static void controlTask(void *arg)
+{
+ (void)arg;
+ int control_temp = control_flag;
+ int count = 0;
+ static int display_timer = 0; // 显示计时器
+
+ while (1)
+ {
+ if(control_flag != control_temp)
+ {
+ count = 0;
+ display_timer = 0;
+ OledClearScreen(); // 使用新的清屏函数
+ control_temp = control_flag;
+
+ // 处理新的JSON命令格式
+ if(control_flag == CMD_ROTATE_DISPLAY_CLEAR) // 命令1:顺时针90°+显示字符串+10秒后逆时针90°+清屏
+ {
+ printf("Command 1: Rotate clockwise, display text, wait 10s, rotate back, clear\r\n");
+
+ // 顺时针旋转90度
+ servo_rotate_clockwise_90();
+
+ // 显示字符串
+ if (strlen(g_current_command.text) > 0) {
+ printf("Displaying text: %s\r\n", g_current_command.text);
+ DisplayMixedString(0, 0, g_current_command.text);
+ }
+
+ display_timer = 10; // 设置10秒计时器
+ }
+ else if(control_flag == CMD_ROTATE_CLOCKWISE) // 命令2:顺时针90°
+ {
+ printf("Command 2: Rotate clockwise 90 degrees\r\n");
+ servo_rotate_clockwise_90();
+ }
+ else if(control_flag == CMD_ROTATE_COUNTER) // 命令3:逆时针90°
+ {
+ printf("Command 3: Rotate counter-clockwise 90 degrees\r\n");
+ servo_rotate_counter_clockwise_90();
+ }
+ else if(control_flag == CMD_DISPLAY_ONLY) // 命令4:只显示字符串,舵机不动
+ {
+ printf("Command 4: Display text only, no servo movement\r\n");
+
+ // 只显示字符串,不控制舵机
+ if (strlen(g_current_command.text) > 0) {
+ printf("Displaying text: %s\r\n", g_current_command.text);
+ DisplayMixedString(0, 0, g_current_command.text);
+ }
+ }
+ // 兼容旧命令的处理逻辑(只有在非JSON命令时才执行)
+ else if(control_flag == 0 && g_current_command.cmd == 0) // 兼容旧命令:关闭
+ {
+ regress_middle();
+ printf("barrier off\n");
+ }
+ else if(control_flag == 1 && g_current_command.cmd == 0) // 兼容旧命令:开启(只有非JSON命令时)
+ {
+ servo_rotate_counter_clockwise_90();
+ printf("barrier on\n");
+ }
+
+ // 兼容旧的复杂字符串解析逻辑 - 只有在非JSON命令时才执行
+ if(control_flag == 2 && g_current_command.cmd == 0)
+ {
+ char prefix[20]; // 存储前部分字符串
+ int num; // 存储后部分数字
+ int index1 = 0;
+
+ // 使用 sscanf 解析字符串
+ int result = sscanf(response, "%[^i]index:%dflag:%d", prefix, &num,&index1);
+
+ if (result == 3) {
+ memset(response,0,sizeof(response));
+ OledShowChinese3(0,0,num);
+ OledShowString(18, 0, prefix, FONT8x16);
+ OledShowChinese3(0 , 2, index1);
+ OledShowChinese3(18 , 2, 33);
+ }
+ if (index1 == 32)
+ {
+ servo_rotate_counter_clockwise_90();
+ }
+ }
+ }
+
+ // 处理命令1的10秒计时器
+ if(control_flag == CMD_ROTATE_DISPLAY_CLEAR && display_timer > 0)
+ {
+ display_timer--;
+ if(display_timer == 0)
+ {
+ printf("10 seconds elapsed, rotating back and clearing screen\r\n");
+ // 逆时针旋转90度
+ servo_rotate_counter_clockwise_90();
+ // 清屏
+ OledClearScreen();
+ // 重置控制标志
+ control_flag = 0;
+ }
+ }
+
+ // 兼容旧的计时逻辑
+ if(control_flag == 2 && g_current_command.cmd == 0)
+ {
+ count++;
+ if(count > 10)
+ {
+ control_flag = 0;
+ count = 0;
+ }
+ }
+
+ sleep(1);
+ }
+}
+// 主线程函数
+static void NetDemoTask(void *arg)
+{
+ (void)arg;
+
+ int control_temp = 0;
+ // 定义热点配置
+ WifiDeviceConfig config = {0};
+
+ // 设置热点配置中的SSID
+ strcpy(config.ssid, PARAM_HOTSPOT_SSID);
+
+ // 设置热点配置中的密码
+ strcpy(config.preSharedKey, PARAM_HOTSPOT_PSK);
+
+ // 设置热点配置中的加密方式(Wi-Fi security types)
+ config.securityType = PARAM_HOTSPOT_TYPE;
+
+ // 显示启动信息
+ printf("=== Hi3861 智能闸机控制系统启动 ===\r\n");
+ printf("正在连接WiFi: %s\r\n", PARAM_HOTSPOT_SSID);
+ printf("服务器地址: %s:%d\r\n", PARAM_SERVER_ADDR, PARAM_SERVER_PORT);
+
+ // 在OLED上显示启动信息
+ OledFillScreen(0x00);
+ OledShowString(0, 0, "Starting...", FONT8x16);
+ OledShowString(0, 2, PARAM_HOTSPOT_SSID, FONT8x16);
+
+ // 等待100ms
+ osDelay(10);
+
+ // 连接到热点
+ printf("开始连接WiFi...\r\n");
+ int netId = ConnectToHotspot(&config);
+
+ // 检查是否成功连接到热点
+ if (netId < 0)
+ {
+ // 连接到热点失败
+ printf("WiFi连接失败!错误代码: %d\r\n", netId);
+ OledFillScreen(0x00);
+ OledShowString(0, 0, "WiFi Failed!", FONT8x16);
+ OledShowString(0, 2, "Check Config", FONT8x16);
+ return;
+ }
+
+ // 连接到热点成功,显示连接成功信息
+ printf("WiFi连接成功!网络ID: %d\r\n", netId);
+ OledFillScreen(0x00);
+ OledShowString(0, 0, "WiFi Connected", FONT8x16);
+ OledShowString(0, 2, "Starting UDP...", FONT8x16);
+
+ // 等待一段时间确保连接稳定
+ printf("等待网络稳定...\r\n");
+ sleep(3);
+
+ // 运行UDP客户端测试,发送IP地址到服务器
+ printf("启动UDP客户端,连接服务器 %s:%d\r\n", PARAM_SERVER_ADDR, PARAM_SERVER_PORT);
+ UdpClientTest(PARAM_SERVER_ADDR, PARAM_SERVER_PORT);
+
+ // 断开热点连接
+ printf("断开WiFi连接...\r\n");
+ DisconnectWithHotspot(netId);
+ printf("WiFi连接已断开!\r\n");
+}
+
+// 入口函数
+static void NetDemoEntry(void)
+{
+ switch_init();
+ interrupt_monitor();
+ // 初始化OLED
+ OledInit();
+
+ // 全屏填充黑色
+ OledFillScreen(0x00);
+
+ // OLED显示APP标题
+ OledShowString(0, 0, "UdpClient Test", FONT8x16);
+
+
+ // 定义线程属性
+ osThreadAttr_t attr;
+ attr.name = "NetDemoTask";
+ attr.attr_bits = 0U;
+ attr.cb_mem = NULL;
+ attr.cb_size = 0U;
+ attr.stack_mem = NULL;
+ attr.stack_size = 10240;
+ attr.priority = osPriorityNormal;
+ // 创建线程
+ if (osThreadNew(NetDemoTask, NULL, &attr) == NULL)
+ {
+ printf("[NetDemoEntry] Falied to create NetDemoTask!\n");
+ }
+ attr.name = "controlTask";
+ attr.stack_size = 2048;
+ if (osThreadNew(controlTask, NULL, &attr) == NULL)
+ {
+ printf("[control] Falied to create NetDemoTask!\n");
+ }
+}
+
+// 运行入口函数
+SYS_RUN(NetDemoEntry);
diff --git a/display_helper.c b/display_helper.c
new file mode 100644
index 0000000..fb29740
--- /dev/null
+++ b/display_helper.c
@@ -0,0 +1,64 @@
+#include "display_helper.h"
+#include "chinese_char_map.h"
+#include "json_parser.h"
+#include "oled_ssd1306.h"
+#include
+#include
+
+// 显示混合字符串(中文+英文数字)
+void DisplayMixedString(uint8_t start_x, uint8_t start_y, const char* text) {
+ if (!text) {
+ return;
+ }
+
+ uint8_t x = start_x;
+ uint8_t y = start_y;
+ int i = 0;
+ int text_len = strlen(text);
+
+ printf("DisplayMixedString: Processing text '%s' (length: %d)\r\n", text, text_len);
+
+ while (i < text_len) {
+ // 检查是否为UTF-8中文字符(通常以0xE开头的3字节序列)
+ if ((unsigned char)text[i] >= 0xE0 && i + 2 < text_len) {
+ // 提取3字节的UTF-8中文字符
+ char chinese_char[4] = {0};
+ chinese_char[0] = text[i];
+ chinese_char[1] = text[i + 1];
+ chinese_char[2] = text[i + 2];
+ chinese_char[3] = '\0';
+
+ printf("Found Chinese char: %02X %02X %02X\r\n",
+ (unsigned char)chinese_char[0],
+ (unsigned char)chinese_char[1],
+ (unsigned char)chinese_char[2]);
+
+ // 查找字符在fonts3数组中的索引
+ int font_index = FindChineseCharIndex(chinese_char);
+ if (font_index >= 0) {
+ printf("Displaying Chinese char at index %d, position (%d, %d)\r\n", font_index, x, y);
+ OledShowChinese3(x, y, font_index);
+ x += 16; // 中文字符宽度为16像素
+ } else {
+ printf("Chinese char not found in font table, displaying as '?'\r\n");
+ // 如果找不到字符,显示问号
+ OledShowString(x, y, "?", FONT8x16);
+ x += 8; // 英文字符宽度为8像素
+ }
+ i += 3; // 跳过3字节的UTF-8字符
+ } else {
+ // 处理ASCII字符(英文、数字、符号)
+ char ascii_char[2] = {text[i], '\0'};
+ printf("Found ASCII char: '%c' (0x%02X)\r\n", text[i], (unsigned char)text[i]);
+ OledShowString(x, y, ascii_char, FONT8x16);
+ x += 8; // 英文字符宽度为8像素
+ i++;
+ }
+
+ // 检查是否需要换行(假设屏幕宽度为128像素)
+ if (x >= 120) {
+ x = start_x;
+ y += 2; // 每行高度为2个单位(16像素)
+ }
+ }
+}
\ No newline at end of file
diff --git a/display_helper.h b/display_helper.h
new file mode 100644
index 0000000..fb0057f
--- /dev/null
+++ b/display_helper.h
@@ -0,0 +1,9 @@
+#ifndef DISPLAY_HELPER_H
+#define DISPLAY_HELPER_H
+
+#include
+
+// 显示混合字符串(中文+英文数字)
+void DisplayMixedString(uint8_t start_x, uint8_t start_y, const char* text);
+
+#endif // DISPLAY_HELPER_H
\ No newline at end of file
diff --git a/json_parser.c b/json_parser.c
new file mode 100644
index 0000000..51f2202
--- /dev/null
+++ b/json_parser.c
@@ -0,0 +1,72 @@
+#include "json_parser.h"
+#include "chinese_char_map.h"
+#include
+#include
+#include
+
+// 简单的JSON解析函数,解析格式: {"cmd":1,"text":"hello"}
+int ParseJsonCommand(const char* json_str, JsonCommand* command) {
+ if (!json_str || !command) {
+ return -1;
+ }
+
+ // 初始化结构体
+ command->cmd = 0;
+ memset(command->text, 0, MAX_TEXT_LENGTH);
+
+ // 查找cmd字段
+ const char* cmd_pos = strstr(json_str, "\"cmd\":");
+ if (cmd_pos) {
+ cmd_pos += 6; // 跳过"cmd":
+ // 跳过空格
+ while (*cmd_pos == ' ') cmd_pos++;
+ command->cmd = atoi(cmd_pos);
+ }
+
+ // 查找text字段
+ const char* text_pos = strstr(json_str, "\"text\":");
+ if (text_pos) {
+ text_pos += 7; // 跳过"text":
+ // 跳过空格和引号
+ while (*text_pos == ' ' || *text_pos == '\"') text_pos++;
+
+ // 复制文本直到遇到引号或字符串结束
+ int i = 0;
+ while (*text_pos && *text_pos != '\"' && i < MAX_TEXT_LENGTH - 1) {
+ command->text[i++] = *text_pos++;
+ }
+ command->text[i] = '\0';
+ }
+
+ return 0;
+}
+
+// 创建IP地址消息,格式: {"type":"ip","address":"192.168.1.100"}
+int CreateIpMessage(char* buffer, int buffer_size, const char* ip_address) {
+ if (!buffer || !ip_address || buffer_size < 50) {
+ return -1;
+ }
+
+ int len = snprintf(buffer, buffer_size,
+ "{\"type\":\"ip\",\"address\": \"%s\"}",
+ ip_address);
+
+ return (len > 0 && len < buffer_size) ? 0 : -1;
+}
+
+// 查找中文字符在fonts3数组中的索引
+int FindChineseCharIndex(const char* utf8_char) {
+ if (!utf8_char) {
+ return -1;
+ }
+
+ // 遍历映射表查找匹配的字符
+ for (int i = 0; i < CHINESE_CHAR_MAP_SIZE; i++) {
+ if (strcmp(utf8_char, chinese_char_map[i].utf8_char) == 0) {
+ return chinese_char_map[i].font_index;
+ }
+ }
+
+ // 未找到匹配的字符
+ return -1;
+}
\ No newline at end of file
diff --git a/json_parser.h b/json_parser.h
new file mode 100644
index 0000000..1510a4f
--- /dev/null
+++ b/json_parser.h
@@ -0,0 +1,29 @@
+#ifndef JSON_PARSER_H
+#define JSON_PARSER_H
+
+#include
+
+// 定义命令类型
+#define CMD_ROTATE_DISPLAY_CLEAR 1 // 顺时针90°+显示字符串+10秒后逆时针90°+清屏
+#define CMD_ROTATE_CLOCKWISE 2 // 顺时针90°
+#define CMD_ROTATE_COUNTER 3 // 逆时针90°
+#define CMD_DISPLAY_ONLY 4 // 只显示字符串,舵机不动
+
+// 定义最大字符串长度
+#define MAX_TEXT_LENGTH 64
+
+// JSON命令结构体
+typedef struct {
+ int cmd; // 命令类型
+ char text[MAX_TEXT_LENGTH]; // 显示文本
+} JsonCommand;
+
+// 函数声明
+int ParseJsonCommand(const char* json_str, JsonCommand* command);
+// 创建IP地址消息,格式: {"type":"ip","address":"192.168.1.100"}
+int CreateIpMessage(char* buffer, int buffer_size, const char* ip_address);
+
+// 查找中文字符在fonts3数组中的索引
+int FindChineseCharIndex(const char* utf8_char);
+
+#endif // JSON_PARSER_H
\ No newline at end of file
diff --git a/main.py b/main.py
deleted file mode 100644
index e0d6477..0000000
--- a/main.py
+++ /dev/null
@@ -1,436 +0,0 @@
-import sys
-import cv2
-import numpy as np
-from PyQt5.QtWidgets import (
- QApplication, QMainWindow, QWidget, QVBoxLayout, QHBoxLayout,
- QLabel, QPushButton, QScrollArea, QFrame, QSizePolicy
-)
-from PyQt5.QtCore import QTimer, Qt, pyqtSignal, QThread
-from PyQt5.QtGui import QImage, QPixmap, QFont, QPainter, QPen, QColor
-import os
-from yolopart.detector import LicensePlateYOLO
-
-#选择使用哪个模块
-from LPRNET_part.lpr_interface import LPRNmodel_predict
-from LPRNET_part.lpr_interface import LPRNinitialize_model
-
-#使用OCR
-#from OCR_part.ocr_interface import LPRNmodel_predict
-#from OCR_part.ocr_interface import LPRNinitialize_model
-# 使用CRNN
-#from CRNN_part.crnn_interface import LPRNmodel_predict
-#from CRNN_part.crnn_interface import LPRNinitialize_model
-
-class CameraThread(QThread):
- """摄像头线程类"""
- frame_ready = pyqtSignal(np.ndarray)
-
- def __init__(self):
- super().__init__()
- self.camera = None
- self.running = False
-
- def start_camera(self):
- """启动摄像头"""
- self.camera = cv2.VideoCapture(0)
- if self.camera.isOpened():
- self.running = True
- self.start()
- return True
- return False
-
- def stop_camera(self):
- """停止摄像头"""
- self.running = False
- if self.camera:
- self.camera.release()
- self.quit()
- self.wait()
-
- def run(self):
- """线程运行函数"""
- while self.running:
- if self.camera and self.camera.isOpened():
- ret, frame = self.camera.read()
- if ret:
- self.frame_ready.emit(frame)
- self.msleep(30) # 约30fps
-
-class LicensePlateWidget(QWidget):
- """单个车牌结果显示组件"""
-
- def __init__(self, plate_id, class_name, corrected_image, plate_number):
- super().__init__()
- self.plate_id = plate_id
- self.init_ui(class_name, corrected_image, plate_number)
-
- def init_ui(self, class_name, corrected_image, plate_number):
- layout = QHBoxLayout()
- layout.setContentsMargins(10, 5, 10, 5)
-
- # 车牌类型标签
- type_label = QLabel(class_name)
- type_label.setFixedWidth(60)
- type_label.setAlignment(Qt.AlignCenter)
- type_label.setStyleSheet(
- "QLabel { "
- "background-color: #4CAF50 if class_name == '绿牌' else #2196F3; "
- "color: white; "
- "border-radius: 5px; "
- "padding: 5px; "
- "font-weight: bold; "
- "}"
- )
- if class_name == '绿牌':
- type_label.setStyleSheet(
- "QLabel { "
- "background-color: #4CAF50; "
- "color: white; "
- "border-radius: 5px; "
- "padding: 5px; "
- "font-weight: bold; "
- "}"
- )
- else:
- type_label.setStyleSheet(
- "QLabel { "
- "background-color: #2196F3; "
- "color: white; "
- "border-radius: 5px; "
- "padding: 5px; "
- "font-weight: bold; "
- "}"
- )
-
- # 矫正后的车牌图像
- image_label = QLabel()
- image_label.setFixedSize(120, 40)
- image_label.setStyleSheet("border: 1px solid #ddd; background-color: white;")
-
- if corrected_image is not None:
- # 转换numpy数组为QPixmap
- h, w = corrected_image.shape[:2]
- if len(corrected_image.shape) == 3:
- bytes_per_line = 3 * w
- q_image = QImage(corrected_image.data, w, h, bytes_per_line, QImage.Format_RGB888).rgbSwapped()
- else:
- bytes_per_line = w
- q_image = QImage(corrected_image.data, w, h, bytes_per_line, QImage.Format_Grayscale8)
-
- pixmap = QPixmap.fromImage(q_image)
- scaled_pixmap = pixmap.scaled(120, 40, Qt.KeepAspectRatio, Qt.SmoothTransformation)
- image_label.setPixmap(scaled_pixmap)
- else:
- image_label.setText("车牌未完全\n进入摄像头")
- image_label.setAlignment(Qt.AlignCenter)
- image_label.setStyleSheet("border: 1px solid #ddd; background-color: #f5f5f5; color: #666;")
-
- # 车牌号标签
- number_label = QLabel(plate_number)
- number_label.setFixedWidth(150)
- number_label.setAlignment(Qt.AlignCenter)
- number_label.setStyleSheet(
- "QLabel { "
- "border: 1px solid #ddd; "
- "background-color: white; "
- "padding: 8px; "
- "font-family: 'Courier New'; "
- "font-size: 14px; "
- "font-weight: bold; "
- "}"
- )
-
- layout.addWidget(type_label)
- layout.addWidget(image_label)
- layout.addWidget(number_label)
- layout.addStretch()
-
- self.setLayout(layout)
- self.setStyleSheet(
- "QWidget { "
- "background-color: white; "
- "border: 1px solid #e0e0e0; "
- "border-radius: 8px; "
- "margin: 2px; "
- "}"
- )
-
-class MainWindow(QMainWindow):
- """主窗口类"""
-
- def __init__(self):
- super().__init__()
- self.detector = None
- self.camera_thread = None
- self.current_frame = None
- self.detections = []
-
- self.init_ui()
- self.init_detector()
- self.init_camera()
-
- # 初始化OCR/CRNN模型(函数名改成一样的了,所以不要修改这里了,想用哪个模块直接导入)
- LPRNinitialize_model()
-
-
- def init_ui(self):
- """初始化用户界面"""
- self.setWindowTitle("车牌识别系统")
- self.setGeometry(100, 100, 1200, 800)
-
- # 创建中央widget
- central_widget = QWidget()
- self.setCentralWidget(central_widget)
-
- # 创建主布局
- main_layout = QHBoxLayout(central_widget)
-
- # 左侧摄像头显示区域
- left_frame = QFrame()
- left_frame.setFrameStyle(QFrame.StyledPanel)
- left_frame.setStyleSheet("QFrame { background-color: #f0f0f0; border: 2px solid #ddd; }")
- left_layout = QVBoxLayout(left_frame)
-
- # 摄像头显示标签
- self.camera_label = QLabel()
- self.camera_label.setMinimumSize(640, 480)
- self.camera_label.setStyleSheet("QLabel { background-color: black; border: 1px solid #ccc; }")
- self.camera_label.setAlignment(Qt.AlignCenter)
- self.camera_label.setText("摄像头未启动")
- self.camera_label.setScaledContents(True)
-
- # 控制按钮
- button_layout = QHBoxLayout()
- self.start_button = QPushButton("启动摄像头")
- self.stop_button = QPushButton("停止摄像头")
- self.start_button.clicked.connect(self.start_camera)
- self.stop_button.clicked.connect(self.stop_camera)
- self.stop_button.setEnabled(False)
-
- button_layout.addWidget(self.start_button)
- button_layout.addWidget(self.stop_button)
- button_layout.addStretch()
-
- left_layout.addWidget(self.camera_label)
- left_layout.addLayout(button_layout)
-
- # 右侧结果显示区域
- right_frame = QFrame()
- right_frame.setFrameStyle(QFrame.StyledPanel)
- right_frame.setFixedWidth(400)
- right_frame.setStyleSheet("QFrame { background-color: #fafafa; border: 2px solid #ddd; }")
- right_layout = QVBoxLayout(right_frame)
-
- # 标题
- title_label = QLabel("检测结果")
- title_label.setAlignment(Qt.AlignCenter)
- title_label.setFont(QFont("Arial", 16, QFont.Bold))
- title_label.setStyleSheet("QLabel { color: #333; padding: 10px; }")
-
- # 车牌数量显示
- self.count_label = QLabel("识别到的车牌数量: 0")
- self.count_label.setAlignment(Qt.AlignCenter)
- self.count_label.setFont(QFont("Arial", 12))
- self.count_label.setStyleSheet(
- "QLabel { "
- "background-color: #e3f2fd; "
- "border: 1px solid #2196f3; "
- "border-radius: 5px; "
- "padding: 8px; "
- "color: #1976d2; "
- "font-weight: bold; "
- "}"
- )
-
- # 滚动区域用于显示车牌结果
- scroll_area = QScrollArea()
- scroll_area.setWidgetResizable(True)
- scroll_area.setStyleSheet("QScrollArea { border: none; background-color: transparent; }")
-
- self.results_widget = QWidget()
- self.results_layout = QVBoxLayout(self.results_widget)
- self.results_layout.setAlignment(Qt.AlignTop)
-
- scroll_area.setWidget(self.results_widget)
-
- right_layout.addWidget(title_label)
- right_layout.addWidget(self.count_label)
- right_layout.addWidget(scroll_area)
-
- # 添加到主布局
- main_layout.addWidget(left_frame, 2)
- main_layout.addWidget(right_frame, 1)
-
- # 设置样式
- self.setStyleSheet("""
- QMainWindow {
- background-color: #f5f5f5;
- }
- QPushButton {
- background-color: #2196F3;
- color: white;
- border: none;
- padding: 8px 16px;
- border-radius: 4px;
- font-weight: bold;
- }
- QPushButton:hover {
- background-color: #1976D2;
- }
- QPushButton:pressed {
- background-color: #0D47A1;
- }
- QPushButton:disabled {
- background-color: #cccccc;
- color: #666666;
- }
- """)
-
- def init_detector(self):
- """初始化检测器"""
- model_path = os.path.join(os.path.dirname(__file__), "yolopart", "yolo11s-pose42.pt")
- self.detector = LicensePlateYOLO(model_path)
-
- def init_camera(self):
- """初始化摄像头线程"""
- self.camera_thread = CameraThread()
- self.camera_thread.frame_ready.connect(self.process_frame)
-
- def start_camera(self):
- """启动摄像头"""
- if self.camera_thread.start_camera():
- self.start_button.setEnabled(False)
- self.stop_button.setEnabled(True)
- self.camera_label.setText("摄像头启动中...")
- else:
- self.camera_label.setText("摄像头启动失败")
-
- def stop_camera(self):
- """停止摄像头"""
- self.camera_thread.stop_camera()
- self.start_button.setEnabled(True)
- self.stop_button.setEnabled(False)
- self.camera_label.setText("摄像头已停止")
- self.camera_label.clear()
-
- def process_frame(self, frame):
- """处理摄像头帧"""
- self.current_frame = frame.copy()
-
- # 进行车牌检测
- self.detections = self.detector.detect_license_plates(frame)
-
- # 在图像上绘制检测结果
- display_frame = self.draw_detections(frame.copy())
-
- # 转换为Qt格式并显示
- self.display_frame(display_frame)
-
- # 更新右侧结果显示
- self.update_results_display()
-
- def draw_detections(self, frame):
- """在图像上绘制检测结果"""
- return self.detector.draw_detections(frame, self.detections)
-
- def display_frame(self, frame):
- """显示帧到界面"""
- rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
- h, w, ch = rgb_frame.shape
- bytes_per_line = ch * w
- qt_image = QImage(rgb_frame.data, w, h, bytes_per_line, QImage.Format_RGB888)
-
- pixmap = QPixmap.fromImage(qt_image)
- scaled_pixmap = pixmap.scaled(self.camera_label.size(), Qt.KeepAspectRatio, Qt.SmoothTransformation)
- self.camera_label.setPixmap(scaled_pixmap)
-
- def update_results_display(self):
- """更新右侧结果显示"""
- # 更新车牌数量
- count = len(self.detections)
- self.count_label.setText(f"识别到的车牌数量: {count}")
-
- # 清除之前的结果
- for i in reversed(range(self.results_layout.count())):
- child = self.results_layout.itemAt(i).widget()
- if child:
- child.setParent(None)
-
- # 添加新的结果
- for i, detection in enumerate(self.detections):
- # 矫正车牌图像
- corrected_image = self.correct_license_plate(detection)
-
- # 获取车牌号,传入车牌类型信息
- plate_number = self.recognize_plate_number(corrected_image, detection['class_name'])
-
- # 创建车牌显示组件
- plate_widget = LicensePlateWidget(
- i + 1,
- detection['class_name'],
- corrected_image,
- plate_number
- )
-
- self.results_layout.addWidget(plate_widget)
-
- def correct_license_plate(self, detection):
- """矫正车牌图像"""
- if self.current_frame is None:
- return None
-
- # 检查是否为不完整检测
- if detection.get('incomplete', False):
- return None
-
- # 使用检测器的矫正方法
- return self.detector.correct_license_plate(
- self.current_frame,
- detection['keypoints']
- )
-
- def recognize_plate_number(self, corrected_image, class_name):
- """识别车牌号"""
- if corrected_image is None:
- return "识别失败"
-
- try:
- # 预测函数(来自模块)
- # 函数名改成一样的了,所以不要修改这里了,想用哪个模块直接导入
- result = LPRNmodel_predict(corrected_image)
-
- # 将字符列表转换为字符串,支持8位车牌号
- if isinstance(result, list) and len(result) >= 7:
- # 根据车牌类型决定显示位数
- if class_name == '绿牌' and len(result) >= 8:
- # 绿牌显示8位,过滤掉空字符占位符
- plate_chars = [char for char in result[:8] if char != '']
- # 如果过滤后确实有8位,显示8位;否则显示7位
- if len(plate_chars) == 8:
- return ''.join(plate_chars)
- else:
- return ''.join(plate_chars[:7])
- else:
- # 蓝牌或其他类型显示前7位,过滤掉空字符
- plate_chars = [char for char in result[:7] if char != '']
- return ''.join(plate_chars)
- else:
- return "识别失败"
- except Exception as e:
- print(f"车牌号识别失败: {e}")
- return "识别失败"
-
- def closeEvent(self, event):
- """窗口关闭事件"""
- if self.camera_thread:
- self.camera_thread.stop_camera()
- event.accept()
-
-def main():
- app = QApplication(sys.argv)
- window = MainWindow()
- window.show()
- sys.exit(app.exec_())
-
-if __name__ == "__main__":
- main()
\ No newline at end of file
diff --git a/oled_fonts.h b/oled_fonts.h
new file mode 100644
index 0000000..0f2ebab
--- /dev/null
+++ b/oled_fonts.h
@@ -0,0 +1,211 @@
+// 字库头文件
+
+// 定义条件编译宏,防止头文件的重复包含和编译
+#ifndef OLOED_FONTS_H
+#define OLOED_FONTS_H
+
+/************************************6*8的点阵************************************/
+// 取模方式:纵向8点下高位
+// 采用N*6的二维数组
+// 第一维表示字符
+// 每个字符对应第二维的6个数组元素,每个数组元素1字节,表示1列像素,一共6列8行
+static unsigned char F6x8[][6] =
+{
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // 空格
+ { 0x00, 0x00, 0x00, 0x2f, 0x00, 0x00 }, // !
+ { 0x00, 0x00, 0x07, 0x00, 0x07, 0x00 }, // "
+ { 0x00, 0x14, 0x7f, 0x14, 0x7f, 0x14 }, // #
+ { 0x00, 0x24, 0x2a, 0x7f, 0x2a, 0x12 }, // $
+ { 0x00, 0x62, 0x64, 0x08, 0x13, 0x23 }, // %
+ { 0x00, 0x36, 0x49, 0x55, 0x22, 0x50 }, // &
+ { 0x00, 0x00, 0x05, 0x03, 0x00, 0x00 }, // '
+ { 0x00, 0x00, 0x1c, 0x22, 0x41, 0x00 }, // (
+ { 0x00, 0x00, 0x41, 0x22, 0x1c, 0x00 }, // )
+ { 0x00, 0x14, 0x08, 0x3E, 0x08, 0x14 }, // *
+ { 0x00, 0x08, 0x08, 0x3E, 0x08, 0x08 }, // +
+ { 0x00, 0x00, 0x00, 0xA0, 0x60, 0x00 }, // ,
+ { 0x00, 0x08, 0x08, 0x08, 0x08, 0x08 }, // -
+ { 0x00, 0x00, 0x60, 0x60, 0x00, 0x00 }, // .
+ { 0x00, 0x20, 0x10, 0x08, 0x04, 0x02 }, // /
+ { 0x00, 0x3E, 0x51, 0x49, 0x45, 0x3E }, // 0
+ { 0x00, 0x00, 0x42, 0x7F, 0x40, 0x00 }, // 1
+ { 0x00, 0x42, 0x61, 0x51, 0x49, 0x46 }, // 2
+ { 0x00, 0x21, 0x41, 0x45, 0x4B, 0x31 }, // 3
+ { 0x00, 0x18, 0x14, 0x12, 0x7F, 0x10 }, // 4
+ { 0x00, 0x27, 0x45, 0x45, 0x45, 0x39 }, // 5
+ { 0x00, 0x3C, 0x4A, 0x49, 0x49, 0x30 }, // 6
+ { 0x00, 0x01, 0x71, 0x09, 0x05, 0x03 }, // 7
+ { 0x00, 0x36, 0x49, 0x49, 0x49, 0x36 }, // 8
+ { 0x00, 0x06, 0x49, 0x49, 0x29, 0x1E }, // 9
+ { 0x00, 0x00, 0x36, 0x36, 0x00, 0x00 }, // :
+ { 0x00, 0x00, 0x56, 0x36, 0x00, 0x00 }, // ;
+ { 0x00, 0x08, 0x14, 0x22, 0x41, 0x00 }, // <
+ { 0x00, 0x14, 0x14, 0x14, 0x14, 0x14 }, // =
+ { 0x00, 0x00, 0x41, 0x22, 0x14, 0x08 }, // >
+ { 0x00, 0x02, 0x01, 0x51, 0x09, 0x06 }, // ?
+ { 0x00, 0x32, 0x49, 0x59, 0x51, 0x3E }, // @
+ { 0x00, 0x7C, 0x12, 0x11, 0x12, 0x7C }, // A
+ { 0x00, 0x7F, 0x49, 0x49, 0x49, 0x36 }, // B
+ { 0x00, 0x3E, 0x41, 0x41, 0x41, 0x22 }, // C
+ { 0x00, 0x7F, 0x41, 0x41, 0x22, 0x1C }, // D
+ { 0x00, 0x7F, 0x49, 0x49, 0x49, 0x41 }, // E
+ { 0x00, 0x7F, 0x09, 0x09, 0x09, 0x01 }, // F
+ { 0x00, 0x3E, 0x41, 0x49, 0x49, 0x7A }, // G
+ { 0x00, 0x7F, 0x08, 0x08, 0x08, 0x7F }, // H
+ { 0x00, 0x00, 0x41, 0x7F, 0x41, 0x00 }, // I
+ { 0x00, 0x20, 0x40, 0x41, 0x3F, 0x01 }, // J
+ { 0x00, 0x7F, 0x08, 0x14, 0x22, 0x41 }, // K
+ { 0x00, 0x7F, 0x40, 0x40, 0x40, 0x40 }, // L
+ { 0x00, 0x7F, 0x02, 0x0C, 0x02, 0x7F }, // M
+ { 0x00, 0x7F, 0x04, 0x08, 0x10, 0x7F }, // N
+ { 0x00, 0x3E, 0x41, 0x41, 0x41, 0x3E }, // O
+ { 0x00, 0x7F, 0x09, 0x09, 0x09, 0x06 }, // P
+ { 0x00, 0x3E, 0x41, 0x51, 0x21, 0x5E }, // Q
+ { 0x00, 0x7F, 0x09, 0x19, 0x29, 0x46 }, // R
+ { 0x00, 0x46, 0x49, 0x49, 0x49, 0x31 }, // S
+ { 0x00, 0x01, 0x01, 0x7F, 0x01, 0x01 }, // T
+ { 0x00, 0x3F, 0x40, 0x40, 0x40, 0x3F }, // U
+ { 0x00, 0x1F, 0x20, 0x40, 0x20, 0x1F }, // V
+ { 0x00, 0x3F, 0x40, 0x38, 0x40, 0x3F }, // W
+ { 0x00, 0x63, 0x14, 0x08, 0x14, 0x63 }, // X
+ { 0x00, 0x07, 0x08, 0x70, 0x08, 0x07 }, // Y
+ { 0x00, 0x61, 0x51, 0x49, 0x45, 0x43 }, // Z
+ { 0x00, 0x00, 0x7F, 0x41, 0x41, 0x00 }, // [
+ { 0x00, 0x55, 0x2A, 0x55, 0x2A, 0x55 }, /* \ */
+ { 0x00, 0x00, 0x41, 0x41, 0x7F, 0x00 }, // ]
+ { 0x00, 0x04, 0x02, 0x01, 0x02, 0x04 }, // ^
+ { 0x00, 0x40, 0x40, 0x40, 0x40, 0x40 }, // _
+ { 0x00, 0x00, 0x01, 0x02, 0x04, 0x00 }, // '
+ { 0x00, 0x20, 0x54, 0x54, 0x54, 0x78 }, // a
+ { 0x00, 0x7F, 0x48, 0x44, 0x44, 0x38 }, // b
+ { 0x00, 0x38, 0x44, 0x44, 0x44, 0x20 }, // c
+ { 0x00, 0x38, 0x44, 0x44, 0x48, 0x7F }, // d
+ { 0x00, 0x38, 0x54, 0x54, 0x54, 0x18 }, // e
+ { 0x00, 0x08, 0x7E, 0x09, 0x01, 0x02 }, // f
+ { 0x00, 0x18, 0xA4, 0xA4, 0xA4, 0x7C }, // g
+ { 0x00, 0x7F, 0x08, 0x04, 0x04, 0x78 }, // h
+ { 0x00, 0x00, 0x44, 0x7D, 0x40, 0x00 }, // i
+ { 0x00, 0x40, 0x80, 0x84, 0x7D, 0x00 }, // j
+ { 0x00, 0x7F, 0x10, 0x28, 0x44, 0x00 }, // k
+ { 0x00, 0x00, 0x41, 0x7F, 0x40, 0x00 }, // l
+ { 0x00, 0x7C, 0x04, 0x18, 0x04, 0x78 }, // m
+ { 0x00, 0x7C, 0x08, 0x04, 0x04, 0x78 }, // n
+ { 0x00, 0x38, 0x44, 0x44, 0x44, 0x38 }, // o
+ { 0x00, 0xFC, 0x24, 0x24, 0x24, 0x18 }, // p
+ { 0x00, 0x18, 0x24, 0x24, 0x18, 0xFC }, // q
+ { 0x00, 0x7C, 0x08, 0x04, 0x04, 0x08 }, // r
+ { 0x00, 0x48, 0x54, 0x54, 0x54, 0x20 }, // s
+ { 0x00, 0x04, 0x3F, 0x44, 0x40, 0x20 }, // t
+ { 0x00, 0x3C, 0x40, 0x40, 0x20, 0x7C }, // u
+ { 0x00, 0x1C, 0x20, 0x40, 0x20, 0x1C }, // v
+ { 0x00, 0x3C, 0x40, 0x30, 0x40, 0x3C }, // w
+ { 0x00, 0x44, 0x28, 0x10, 0x28, 0x44 }, // x
+ { 0x00, 0x1C, 0xA0, 0xA0, 0xA0, 0x7C }, // y
+ { 0x00, 0x44, 0x64, 0x54, 0x4C, 0x44 }, // z
+ { 0x14, 0x14, 0x14, 0x14, 0x14, 0x14 }, // horiz lines
+};
+
+/****************************************8*16的点阵************************************/
+// 取模方式:纵向8点下高位
+// 采用一维数组,每个字符对应16个数组元素
+// 每16个数组元素的前8个表示字符的上半部分(8*8点阵),后8个表示字符的下半部分(8*8点阵),一共8列16行
+static const unsigned char F8X16[]=
+{
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//空格 0
+ 0x00,0x00,0x00,0xF8,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x33,0x30,0x00,0x00,0x00,//! 1
+ 0x00,0x10,0x0C,0x06,0x10,0x0C,0x06,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//" 2
+ 0x40,0xC0,0x78,0x40,0xC0,0x78,0x40,0x00,0x04,0x3F,0x04,0x04,0x3F,0x04,0x04,0x00,//# 3
+ 0x00,0x70,0x88,0xFC,0x08,0x30,0x00,0x00,0x00,0x18,0x20,0xFF,0x21,0x1E,0x00,0x00,//$ 4
+ 0xF0,0x08,0xF0,0x00,0xE0,0x18,0x00,0x00,0x00,0x21,0x1C,0x03,0x1E,0x21,0x1E,0x00,//% 5
+ 0x00,0xF0,0x08,0x88,0x70,0x00,0x00,0x00,0x1E,0x21,0x23,0x24,0x19,0x27,0x21,0x10,//& 6
+ 0x10,0x16,0x0E,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//' 7
+ 0x00,0x00,0x00,0xE0,0x18,0x04,0x02,0x00,0x00,0x00,0x00,0x07,0x18,0x20,0x40,0x00,//( 8
+ 0x00,0x02,0x04,0x18,0xE0,0x00,0x00,0x00,0x00,0x40,0x20,0x18,0x07,0x00,0x00,0x00,//) 9
+ 0x40,0x40,0x80,0xF0,0x80,0x40,0x40,0x00,0x02,0x02,0x01,0x0F,0x01,0x02,0x02,0x00,//* 10
+ 0x00,0x00,0x00,0xF0,0x00,0x00,0x00,0x00,0x01,0x01,0x01,0x1F,0x01,0x01,0x01,0x00,//+ 11
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80,0xB0,0x70,0x00,0x00,0x00,0x00,0x00,//, 12
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x01,0x01,0x01,0x01,0x01,0x01,//- 13
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x30,0x30,0x00,0x00,0x00,0x00,0x00,//. 14
+ 0x00,0x00,0x00,0x00,0x80,0x60,0x18,0x04,0x00,0x60,0x18,0x06,0x01,0x00,0x00,0x00,/// 15
+ 0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,0x00,0x0F,0x10,0x20,0x20,0x10,0x0F,0x00,//0 16
+ 0x00,0x10,0x10,0xF8,0x00,0x00,0x00,0x00,0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//1 17
+ 0x00,0x70,0x08,0x08,0x08,0x88,0x70,0x00,0x00,0x30,0x28,0x24,0x22,0x21,0x30,0x00,//2 18
+ 0x00,0x30,0x08,0x88,0x88,0x48,0x30,0x00,0x00,0x18,0x20,0x20,0x20,0x11,0x0E,0x00,//3 19
+ 0x00,0x00,0xC0,0x20,0x10,0xF8,0x00,0x00,0x00,0x07,0x04,0x24,0x24,0x3F,0x24,0x00,//4 20
+ 0x00,0xF8,0x08,0x88,0x88,0x08,0x08,0x00,0x00,0x19,0x21,0x20,0x20,0x11,0x0E,0x00,//5 21
+ 0x00,0xE0,0x10,0x88,0x88,0x18,0x00,0x00,0x00,0x0F,0x11,0x20,0x20,0x11,0x0E,0x00,//6 22
+ 0x00,0x38,0x08,0x08,0xC8,0x38,0x08,0x00,0x00,0x00,0x00,0x3F,0x00,0x00,0x00,0x00,//7 23
+ 0x00,0x70,0x88,0x08,0x08,0x88,0x70,0x00,0x00,0x1C,0x22,0x21,0x21,0x22,0x1C,0x00,//8 24
+ 0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,0x00,0x00,0x31,0x22,0x22,0x11,0x0F,0x00,//9 25
+ 0x00,0x00,0x00,0xC0,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x30,0x30,0x00,0x00,0x00,//: 26
+ 0x00,0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x80,0x60,0x00,0x00,0x00,0x00,//; 27
+ 0x00,0x00,0x80,0x40,0x20,0x10,0x08,0x00,0x00,0x01,0x02,0x04,0x08,0x10,0x20,0x00,//< 28
+ 0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x00,0x04,0x04,0x04,0x04,0x04,0x04,0x04,0x00,//= 29
+ 0x00,0x08,0x10,0x20,0x40,0x80,0x00,0x00,0x00,0x20,0x10,0x08,0x04,0x02,0x01,0x00,//> 30
+ 0x00,0x70,0x48,0x08,0x08,0x08,0xF0,0x00,0x00,0x00,0x00,0x30,0x36,0x01,0x00,0x00,//? 31
+ 0xC0,0x30,0xC8,0x28,0xE8,0x10,0xE0,0x00,0x07,0x18,0x27,0x24,0x23,0x14,0x0B,0x00,//@ 32
+ 0x00,0x00,0xC0,0x38,0xE0,0x00,0x00,0x00,0x20,0x3C,0x23,0x02,0x02,0x27,0x38,0x20,//A 33
+ 0x08,0xF8,0x88,0x88,0x88,0x70,0x00,0x00,0x20,0x3F,0x20,0x20,0x20,0x11,0x0E,0x00,//B 34
+ 0xC0,0x30,0x08,0x08,0x08,0x08,0x38,0x00,0x07,0x18,0x20,0x20,0x20,0x10,0x08,0x00,//C 35
+ 0x08,0xF8,0x08,0x08,0x08,0x10,0xE0,0x00,0x20,0x3F,0x20,0x20,0x20,0x10,0x0F,0x00,//D 36
+ 0x08,0xF8,0x88,0x88,0xE8,0x08,0x10,0x00,0x20,0x3F,0x20,0x20,0x23,0x20,0x18,0x00,//E 37
+ 0x08,0xF8,0x88,0x88,0xE8,0x08,0x10,0x00,0x20,0x3F,0x20,0x00,0x03,0x00,0x00,0x00,//F 38
+ 0xC0,0x30,0x08,0x08,0x08,0x38,0x00,0x00,0x07,0x18,0x20,0x20,0x22,0x1E,0x02,0x00,//G 39
+ 0x08,0xF8,0x08,0x00,0x00,0x08,0xF8,0x08,0x20,0x3F,0x21,0x01,0x01,0x21,0x3F,0x20,//H 40
+ 0x00,0x08,0x08,0xF8,0x08,0x08,0x00,0x00,0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//I 41
+ 0x00,0x00,0x08,0x08,0xF8,0x08,0x08,0x00,0xC0,0x80,0x80,0x80,0x7F,0x00,0x00,0x00,//J 42
+ 0x08,0xF8,0x88,0xC0,0x28,0x18,0x08,0x00,0x20,0x3F,0x20,0x01,0x26,0x38,0x20,0x00,//K 43
+ 0x08,0xF8,0x08,0x00,0x00,0x00,0x00,0x00,0x20,0x3F,0x20,0x20,0x20,0x20,0x30,0x00,//L 44
+ 0x08,0xF8,0xF8,0x00,0xF8,0xF8,0x08,0x00,0x20,0x3F,0x00,0x3F,0x00,0x3F,0x20,0x00,//M 45
+ 0x08,0xF8,0x30,0xC0,0x00,0x08,0xF8,0x08,0x20,0x3F,0x20,0x00,0x07,0x18,0x3F,0x00,//N 46
+ 0xE0,0x10,0x08,0x08,0x08,0x10,0xE0,0x00,0x0F,0x10,0x20,0x20,0x20,0x10,0x0F,0x00,//O 47
+ 0x08,0xF8,0x08,0x08,0x08,0x08,0xF0,0x00,0x20,0x3F,0x21,0x01,0x01,0x01,0x00,0x00,//P 48
+ 0xE0,0x10,0x08,0x08,0x08,0x10,0xE0,0x00,0x0F,0x18,0x24,0x24,0x38,0x50,0x4F,0x00,//Q 49
+ 0x08,0xF8,0x88,0x88,0x88,0x88,0x70,0x00,0x20,0x3F,0x20,0x00,0x03,0x0C,0x30,0x20,//R 50
+ 0x00,0x70,0x88,0x08,0x08,0x08,0x38,0x00,0x00,0x38,0x20,0x21,0x21,0x22,0x1C,0x00,//S 51
+ 0x18,0x08,0x08,0xF8,0x08,0x08,0x18,0x00,0x00,0x00,0x20,0x3F,0x20,0x00,0x00,0x00,//T 52
+ 0x08,0xF8,0x08,0x00,0x00,0x08,0xF8,0x08,0x00,0x1F,0x20,0x20,0x20,0x20,0x1F,0x00,//U 53
+ 0x08,0x78,0x88,0x00,0x00,0xC8,0x38,0x08,0x00,0x00,0x07,0x38,0x0E,0x01,0x00,0x00,//V 54
+ 0xF8,0x08,0x00,0xF8,0x00,0x08,0xF8,0x00,0x03,0x3C,0x07,0x00,0x07,0x3C,0x03,0x00,//W 55
+ 0x08,0x18,0x68,0x80,0x80,0x68,0x18,0x08,0x20,0x30,0x2C,0x03,0x03,0x2C,0x30,0x20,//X 56
+ 0x08,0x38,0xC8,0x00,0xC8,0x38,0x08,0x00,0x00,0x00,0x20,0x3F,0x20,0x00,0x00,0x00,//Y 57
+ 0x10,0x08,0x08,0x08,0xC8,0x38,0x08,0x00,0x20,0x38,0x26,0x21,0x20,0x20,0x18,0x00,//Z 58
+ 0x00,0x00,0x00,0xFE,0x02,0x02,0x02,0x00,0x00,0x00,0x00,0x7F,0x40,0x40,0x40,0x00,//[ 59
+ 0x00,0x0C,0x30,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x06,0x38,0xC0,0x00,//\ 60
+ 0x00,0x02,0x02,0x02,0xFE,0x00,0x00,0x00,0x00,0x40,0x40,0x40,0x7F,0x00,0x00,0x00,//] 61
+ 0x00,0x00,0x04,0x02,0x02,0x02,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//^ 62
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,//_ 63
+ 0x00,0x02,0x02,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//` 64
+ 0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00,0x00,0x19,0x24,0x22,0x22,0x22,0x3F,0x20,//a 65
+ 0x08,0xF8,0x00,0x80,0x80,0x00,0x00,0x00,0x00,0x3F,0x11,0x20,0x20,0x11,0x0E,0x00,//b 66
+ 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00,0x00,0x0E,0x11,0x20,0x20,0x20,0x11,0x00,//c 67
+ 0x00,0x00,0x00,0x80,0x80,0x88,0xF8,0x00,0x00,0x0E,0x11,0x20,0x20,0x10,0x3F,0x20,//d 68
+ 0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00,0x00,0x1F,0x22,0x22,0x22,0x22,0x13,0x00,//e 69
+ 0x00,0x80,0x80,0xF0,0x88,0x88,0x88,0x18,0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//f 70
+ 0x00,0x00,0x80,0x80,0x80,0x80,0x80,0x00,0x00,0x6B,0x94,0x94,0x94,0x93,0x60,0x00,//g 71
+ 0x08,0xF8,0x00,0x80,0x80,0x80,0x00,0x00,0x20,0x3F,0x21,0x00,0x00,0x20,0x3F,0x20,//h 72
+ 0x00,0x80,0x98,0x98,0x00,0x00,0x00,0x00,0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//i 73
+ 0x00,0x00,0x00,0x80,0x98,0x98,0x00,0x00,0x00,0xC0,0x80,0x80,0x80,0x7F,0x00,0x00,//j 74
+ 0x08,0xF8,0x00,0x00,0x80,0x80,0x80,0x00,0x20,0x3F,0x24,0x02,0x2D,0x30,0x20,0x00,//k 75
+ 0x00,0x08,0x08,0xF8,0x00,0x00,0x00,0x00,0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,//l 76
+ 0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x00,0x20,0x3F,0x20,0x00,0x3F,0x20,0x00,0x3F,//m 77
+ 0x80,0x80,0x00,0x80,0x80,0x80,0x00,0x00,0x20,0x3F,0x21,0x00,0x00,0x20,0x3F,0x20,//n 78
+ 0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00,0x00,0x1F,0x20,0x20,0x20,0x20,0x1F,0x00,//o 79
+ 0x80,0x80,0x00,0x80,0x80,0x00,0x00,0x00,0x80,0xFF,0xA1,0x20,0x20,0x11,0x0E,0x00,//p 80
+ 0x00,0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00,0x0E,0x11,0x20,0x20,0xA0,0xFF,0x80,//q 81
+ 0x80,0x80,0x80,0x00,0x80,0x80,0x80,0x00,0x20,0x20,0x3F,0x21,0x20,0x00,0x01,0x00,//r 82
+ 0x00,0x00,0x80,0x80,0x80,0x80,0x80,0x00,0x00,0x33,0x24,0x24,0x24,0x24,0x19,0x00,//s 83
+ 0x00,0x80,0x80,0xE0,0x80,0x80,0x00,0x00,0x00,0x00,0x00,0x1F,0x20,0x20,0x00,0x00,//t 84
+ 0x80,0x80,0x00,0x00,0x00,0x80,0x80,0x00,0x00,0x1F,0x20,0x20,0x20,0x10,0x3F,0x20,//u 85
+ 0x80,0x80,0x80,0x00,0x00,0x80,0x80,0x80,0x00,0x01,0x0E,0x30,0x08,0x06,0x01,0x00,//v 86
+ 0x80,0x80,0x00,0x80,0x00,0x80,0x80,0x80,0x0F,0x30,0x0C,0x03,0x0C,0x30,0x0F,0x00,//w 87
+ 0x00,0x80,0x80,0x00,0x80,0x80,0x80,0x00,0x00,0x20,0x31,0x2E,0x0E,0x31,0x20,0x00,//x 88
+ 0x80,0x80,0x80,0x00,0x00,0x80,0x80,0x80,0x80,0x81,0x8E,0x70,0x18,0x06,0x01,0x00,//y 89
+ 0x00,0x80,0x80,0x80,0x80,0x80,0x80,0x00,0x00,0x21,0x30,0x2C,0x22,0x21,0x30,0x00,//z 90
+ 0x00,0x00,0x00,0x00,0x80,0x7C,0x02,0x02,0x00,0x00,0x00,0x00,0x00,0x3F,0x40,0x40,//{ 91
+ 0x00,0x00,0x00,0x00,0xFF,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00,0x00,0x00,//| 92
+ 0x00,0x02,0x02,0x7C,0x80,0x00,0x00,0x00,0x00,0x40,0x40,0x3F,0x00,0x00,0x00,0x00,//} 93
+ 0x00,0x06,0x01,0x01,0x02,0x02,0x04,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,//~ 94
+};
+
+#endif
diff --git a/oled_ssd1306.c b/oled_ssd1306.c
new file mode 100644
index 0000000..2c92b8e
--- /dev/null
+++ b/oled_ssd1306.c
@@ -0,0 +1,294 @@
+// OLED显示屏简化版驱动源文件
+
+#include // 标准输入输出
+#include // 标准类型定义
+
+#include "iot_gpio.h" // OpenHarmony HAL:IoT硬件设备操作接口-GPIO
+#include "iot_i2c.h" // OpenHarmony HAL:IoT硬件设备操作接口-I2C
+#include "iot_errno.h" // OpenHarmony HAL:IoT硬件设备操作接口-错误代码定义
+#include "hi_io.h" // 海思 Pegasus SDK:IoT硬件设备操作接口-IO
+
+// 字库头文件
+#include "oled_fonts.h"
+
+// OLED显示屏简化版驱动接口文件
+#include "oled_ssd1306.h"
+
+// 定义一个宏,用于计算数组的长度
+#define ARRAY_SIZE(a) sizeof(a) / sizeof(a[0])
+
+// 定义一个宏,用于标识I2C0
+#define OLED_I2C_IDX 0
+
+// 定义一个宏,用于标识I2C0的波特率(传输速率)
+#define OLED_I2C_BAUDRATE (400 * 1000) // 400KHz
+
+// 定义一个宏,用于标识OLED的宽度
+#define OLED_WIDTH (128)
+
+// 定义一个宏,用于标识SSD1306显示屏驱动芯片的设备地址
+#define OLED_I2C_ADDR 0x78
+
+// 定义一个宏,用于标识写命令操作
+#define OLED_I2C_CMD 0x00 // 0000 0000 写命令
+
+// 定义一个宏,用于标识写数据操作
+#define OLED_I2C_DATA 0x40 // 0100 0000(0x40) 写数据
+
+// 定义一个宏,用于标识100ms的延时
+#define DELAY_100_MS (100 * 1000)
+
+// 定义一个结构体,表示要发送或接收的数据
+typedef struct
+{
+ // 要发送的数据的指针
+ unsigned char *sendBuf;
+ // 要发送的数据长度
+ unsigned int sendLen;
+ // 要接收的数据的指针
+ unsigned char *receiveBuf;
+ // 要接收的数据长度
+ unsigned int receiveLen;
+} IotI2cData;
+
+/// @brief 向OLED写一个字节
+/// @param regAddr 写入命令还是数据 OLED_I2C_CMD / OLED_I2C_DATA
+/// @param byte 写入的内容
+/// @retval 成功返回IOT_SUCCESS,失败返回IOT_FAILURE
+static uint32_t I2cWiteByte(uint8_t regAddr, uint8_t byte)
+{
+ // 定义字节流
+ uint8_t buffer[] = {regAddr, byte};
+ IotI2cData i2cData = {0};
+ i2cData.sendBuf = buffer;
+ i2cData.sendLen = sizeof(buffer) / sizeof(buffer[0]);
+
+ // 发送字节流
+ return IoTI2cWrite(OLED_I2C_IDX, OLED_I2C_ADDR, i2cData.sendBuf, i2cData.sendLen);
+}
+
+/// @brief 向OLED写一个命令字节
+/// @param cmd 写入的命令字节
+/// @return 成功返回IOT_SUCCESS,失败返回IOT_FAILURE
+static uint32_t WriteCmd(uint8_t cmd)
+{
+ return I2cWiteByte(OLED_I2C_CMD, cmd);
+}
+
+/// @brief 向OLED写一个数据字节
+/// @param cmd 写入的数据字节
+/// @return 成功返回IOT_SUCCESS,失败返回IOT_FAILURE
+uint32_t WriteData(uint8_t data)
+{
+ return I2cWiteByte(OLED_I2C_DATA, data);
+}
+
+/// @brief 初始化SSD1306显示屏驱动芯片
+uint32_t OledInit(void)
+{
+ // 构造初始化代码
+ static const uint8_t initCmds[] = {
+ 0xAE, // 显示关闭
+ 0x00, // 页寻址模式时,设置列地址的低4位为0000
+ 0x10, // 页寻址模式时,设置列地址的高4位为0000
+ 0x40, // 设置起始行地址为第0行
+ 0xB0, // 页寻址模式时,设置页面起始地址为PAGE0
+ 0x81, // 设置对比度
+ 0xFF, // 对比度数值
+ 0xA1, // set segment remap
+ 0xA6, // 设置正常显示。0对应像素熄灭,1对应像素亮起
+ 0xA8, // --set multiplex ratio(1 to 64)
+ 0x3F, // --1/32 duty
+ 0xC8, // Com scan direction
+ 0xD3, // -set display offset
+ 0x00, //
+ 0xD5, // set osc division
+ 0x80, //
+ 0xD8, // set area color mode off
+ 0x05, //
+ 0xD9, // Set Pre-Charge Period
+ 0xF1, //
+ 0xDA, // set com pin configuartion
+ 0x12, //
+ 0xDB, // set Vcomh
+ 0x30, //
+ 0x8D, // set charge pump enable
+ 0x14, //
+ 0xAF, // 显示开启
+ };
+
+ // 初始化GPIO-13
+ IoTGpioInit(HI_IO_NAME_GPIO_13);
+ // 设置GPIO-13引脚功能为I2C0_SDA
+ hi_io_set_func(HI_IO_NAME_GPIO_13, HI_IO_FUNC_GPIO_13_I2C0_SDA);
+ // 初始化GPIO-14
+ IoTGpioInit(HI_IO_NAME_GPIO_14);
+ // 设置GPIO-14引脚功能为I2C0_SCL
+ hi_io_set_func(HI_IO_NAME_GPIO_14, HI_IO_FUNC_GPIO_14_I2C0_SCL);
+
+ // 用指定的波特速率初始化I2C0
+ IoTI2cInit(OLED_I2C_IDX, OLED_I2C_BAUDRATE);
+
+ // 发送初始化代码,初始化SSD1306显示屏驱动芯片
+ for (size_t i = 0; i < ARRAY_SIZE(initCmds); i++)
+ {
+ // 发送一个命令字节
+ uint32_t status = WriteCmd(initCmds[i]);
+ if (status != IOT_SUCCESS)
+ {
+ return status;
+ }
+ }
+
+ // OLED初始化完成,返回成功
+ return IOT_SUCCESS;
+}
+
+/// @brief 设置显示位置
+/// @param x x坐标,1像素为单位
+/// @param y y坐标,8像素为单位。即页面起始地址
+/// @return 无
+void OledSetPosition(uint8_t x, uint8_t y)
+{
+ //设置页面起始地址
+ WriteCmd(0xb0 + y);
+
+ // 列:0~127
+ // 第0列:0x00列,二进制00000000。低地址0000,即0x00。高地址0000(需要|0x10),0000|0x10=0x10。
+ // 第127列:0x7f列,二进制01111111。低地址1111,即0x0F。高地址0111(需要|0x10),0111|0x10=0x17。
+
+ // 设置显示位置:列地址的低4位
+ // 直接取出列地址低4位作为命令代码的低4位,命令代码的高4位为0000
+ WriteCmd(x & 0x0f);
+
+ // 设置显示位置:列地址的高4位
+ // 取出列地址高4位作为命令代码的低4位,命令代码的高4位必须为0001
+ // 实际编程时,列地址的高4位和0x10(二进制00010000)进行按位或即得到命令代码
+ WriteCmd(((x & 0xf0) >> 4) | 0x10);
+}
+
+/// @brief 全屏填充
+/// @param fillData 填充的数据,1字节
+/// @return 无
+void OledFillScreen(uint8_t fillData)
+{
+ // 相关变量,用于遍历page和列
+ uint8_t m = 0;
+ uint8_t n = 0;
+
+ // 写入所有页的数据
+ for (m = 0; m < 8; m++)
+ {
+ //设置页地址:0~7
+ WriteCmd(0xb0 + m);
+
+ // 设置显示位置为第0列
+ WriteCmd(0x00); //设置显示位置:列低地址(0000)
+ WriteCmd(0x10); //设置显示位置:列高地址(0000)
+
+ // 写入128列数据
+ // 在一个页中,数据按列写入,一次一列,对应发送过来的1字节数据
+ for (n = 0; n < 128; n++)
+ {
+ // 写入一个字节数据
+ WriteData(fillData);
+ }
+ }
+}
+
+/// @brief 清屏函数
+/// @return 无
+void OledClearScreen(void)
+{
+ OledFillScreen(0x00); // 用0x00填充整个屏幕,实现清屏
+}
+
+
+
+/// @brief 显示一个字符
+/// @param x: x坐标,1像素为单位
+/// @param y: y坐标,8像素为单位
+/// @param ch: 要显示的字符
+/// @param font: 字库
+void OledShowChar(uint8_t x, uint8_t y, uint8_t ch, Font font)
+{
+ // 数组下标
+ uint8_t c = 0;
+
+ // 循环控制
+ uint8_t i = 0;
+
+ // 得到数组下标
+ // 空格的ASCII码32,在字库中的下标是0。字库中的字符-空格即相应的数组下标
+ c = ch - ' ';
+
+ // 显示字符
+ if (font == FONT8x16) // 8*16的点阵,一个page放不下
+ {
+ // 显示字符的上半部分
+ // 设置显示位置
+ OledSetPosition(x, y);
+ // 逐个字节写入(16个数组元素的前8个)
+ for (i = 0; i < 8; i++)
+ {
+ WriteData(F8X16[c * 16 + i]);
+ }
+
+ // 显示字符的下半部分
+ // 设置显示位置为下一个PAGE
+ OledSetPosition(x, y + 1);
+ // 逐个字节写入(16个数组元素的后8个)
+ for (i = 0; i < 8; i++)
+ {
+ WriteData(F8X16[c * 16 + 8 + i]);
+ }
+ }
+ else // 6*8的点阵,在一个page中
+ {
+ // 设置显示位置
+ OledSetPosition(x, y);
+ // 逐个字节写入(数组第二维的6个数组元素)
+ for (i = 0; i < 6; i++)
+ {
+ WriteData(F6x8[c][i]);
+ }
+ }
+}
+
+/// @brief 显示一个字符串
+/// @param x: x坐标,1像素为单位
+/// @param y: y坐标,8像素为单位
+/// @param str: 要显示的字符串
+/// @param font: 字库
+void OledShowString(uint8_t x, uint8_t y, const char *str, Font font)
+{
+ // 字符数组(字符串)下标
+ uint8_t j = 0;
+
+ // 检查字符串是否为空
+ if (str == NULL)
+ {
+ printf("param is NULL,Please check!!!\r\n");
+ return;
+ }
+
+ // 遍历字符串,显示每个字符
+ while (str[j])
+ {
+ // 显示一个字符
+ OledShowChar(x, y, str[j], font);
+
+ // 设置字符间距
+ x += 8;
+
+ // 如果下一个要显示的字符超出了OLED显示的范围,则换行
+ if (x > 120)
+ {
+ x = 0;
+ y += 2;
+ }
+
+ // 下一个字符
+ j++;
+ }
+}
diff --git a/oled_ssd1306.h b/oled_ssd1306.h
new file mode 100644
index 0000000..556f60b
--- /dev/null
+++ b/oled_ssd1306.h
@@ -0,0 +1,32 @@
+// OLED显示屏简化版驱动接口文件
+
+// 定义条件编译宏,防止头文件的重复包含和编译
+#ifndef OLED_SSD1306_H
+#define OLED_SSD1306_H
+
+#include // 定义了几种扩展的整数类型和宏
+
+// 声明接口函数
+
+uint32_t OledInit(void);
+void OledSetPosition(uint8_t x, uint8_t y);
+void OledFillScreen(uint8_t fillData);
+uint32_t WriteData(uint8_t data);
+
+// 清屏函数
+void OledClearScreen(void);
+
+// 定义字库类型
+enum Font {
+ FONT6x8 = 1,
+ FONT8x16
+};
+typedef enum Font Font;
+
+// 声明接口函数
+
+void OledShowChar(uint8_t x, uint8_t y, uint8_t ch, Font font);
+void OledShowString(uint8_t x, uint8_t y, const char* str, Font font);
+
+// 条件编译结束
+#endif // OLED_SSD1306_H
diff --git a/requirements.txt b/requirements.txt
deleted file mode 100644
index f5e0e68..0000000
--- a/requirements.txt
+++ /dev/null
@@ -1,25 +0,0 @@
-# 车牌识别系统依赖包
-
-# 深度学习和计算机视觉
-ultralytics>=8.0.0
-opencv-python>=4.5.0
-numpy>=1.21.0
-
-# PyQt5界面
-PyQt5>=5.15.0
-
-# 图像处理
-Pillow>=8.0.0
-
-#paddleocr
-python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
-python -m pip install "paddleocr[all]"
-
-
-# 可选:如果需要GPU加速
-# torch>=1.9.0
-# torchvision>=0.10.0
-
-# 可选:如果需要其他功能
-# matplotlib>=3.3.0 # 用于调试和可视化
-# scipy>=1.7.0 # 科学计算
\ No newline at end of file
diff --git a/robot_sg90.c b/robot_sg90.c
new file mode 100644
index 0000000..c627f31
--- /dev/null
+++ b/robot_sg90.c
@@ -0,0 +1,69 @@
+#include
+#include
+#include
+
+#include "ohos_init.h"
+#include "cmsis_os2.h"
+#include "iot_gpio.h"
+#include "hi_io.h"
+#include "hi_time.h"
+
+//查阅机器人板原理图可知,SG90舵机通过GPIO2与3861连接
+//SG90舵机的控制需要MCU产生一个周期为20ms的脉冲信号,以0.5ms到2.5ms的高电平来控制舵机转动的角度
+#define GPIO2 2
+
+//输出20000微秒的脉冲信号(x微秒高电平,20000-x微秒低电平)
+void set_angle( unsigned int duty) {
+ IoTGpioSetDir(GPIO2, IOT_GPIO_DIR_OUT);//设置GPIO2为输出模式
+
+ //GPIO2输出x微秒高电平
+ IoTGpioSetOutputVal(GPIO2, IOT_GPIO_VALUE1);
+ hi_udelay(duty);
+
+ //GPIO2输出20000-x微秒低电平
+ IoTGpioSetOutputVal(GPIO2, IOT_GPIO_VALUE0);
+ hi_udelay(20000 - duty);
+}
+
+/*Steering gear turn left (counter-clockwise 90 degrees)
+1、依据角度与脉冲的关系,设置高电平时间为1000微秒
+2、发送20次脉冲信号,控制舵机逆时针旋转90度
+*/
+void engine_turn_left(void)
+{
+ for (int i = 0; i < 20; i++) {
+ set_angle(1000);
+ }
+}
+
+/*Steering gear turn right (clockwise 90 degrees)
+1、依据角度与脉冲的关系,设置高电平时间为2000微秒
+2、发送20次脉冲信号,控制舵机顺时针旋转90度
+*/
+void engine_turn_right(void)
+{
+ for (int i = 0; i < 20; i++) {
+ set_angle(2000);
+ }
+}
+
+/*Steering gear return to middle
+1、依据角度与脉冲的关系,设置高电平时间为1500微秒
+2、发送20次脉冲信号,控制舵机居中
+*/
+void regress_middle(void)
+{
+ for (int i = 0; i < 20; i++) {
+ set_angle(1500);
+ }
+}
+
+// 顺时针旋转90度
+void servo_rotate_clockwise_90(void) {
+ engine_turn_right();
+}
+
+// 逆时针旋转90度
+void servo_rotate_counter_clockwise_90(void) {
+ engine_turn_left();
+}
diff --git a/robot_sg90.h b/robot_sg90.h
new file mode 100644
index 0000000..41c3d7c
--- /dev/null
+++ b/robot_sg90.h
@@ -0,0 +1,13 @@
+#ifndef ROBOT_SG90_H
+#define ROBOT_SG90_H
+
+void set_angle(int angle);
+void engine_turn_left(void);
+void engine_turn_right(void);
+void regress_middle(void);
+
+// 新增的90度精确旋转函数
+void servo_rotate_clockwise_90(void);
+void servo_rotate_counter_clockwise_90(void);
+
+#endif
\ No newline at end of file
diff --git a/simple_client.py b/simple_client.py
new file mode 100644
index 0000000..92fe9a4
--- /dev/null
+++ b/simple_client.py
@@ -0,0 +1,53 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+"""
+简单的UDP客户端程序
+向Hi3861设备发送JSON命令
+"""
+
+import socket
+import json
+import time
+
+def send_command():
+ """发送命令到Hi3861设备"""
+ # 目标设备信息
+ target_ip = "192.168.43.12"
+ target_port = 8081
+
+ # 创建JSON命令
+ command = {
+ "cmd": 1, # 测试命令4:只显示字符串,舵机不动
+ "text": "沪AAAAAA 通行 2sec"
+ }
+
+ json_command = json.dumps(command, ensure_ascii=False)
+
+ try:
+ # 创建UDP socket
+ sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
+
+ # 发送命令
+ print(f"正在向 {target_ip}:{target_port} 发送命令...")
+ print(f"命令内容: {json_command}")
+
+ sock.sendto(json_command.encode('utf-8'), (target_ip, target_port))
+
+ print("命令发送成功!")
+ print("设备将执行以下操作:")
+ print("1. 顺时针旋转舵机90度")
+ print("2. 在OLED屏幕上显示:沪AAAAAA")
+ print("3. 等待10秒")
+ print("4. 逆时针旋转舵机90度")
+ print("5. 清空OLED屏幕")
+
+ except Exception as e:
+ print(f"发送命令失败: {e}")
+ finally:
+ sock.close()
+
+if __name__ == "__main__":
+ print("Hi3861 简单客户端程序")
+ print("=" * 30)
+ send_command()
+ print("程序结束")
\ No newline at end of file
diff --git a/test_json.c b/test_json.c
new file mode 100644
index 0000000..48e3b3b
--- /dev/null
+++ b/test_json.c
@@ -0,0 +1,56 @@
+#include
+#include
+#include "json_parser.h"
+
+// 测试JSON解析功能
+void test_json_parsing() {
+ printf("=== JSON解析测试 ===\n");
+
+ // 测试命令1:旋转+显示+清屏
+ char test1[] = "{\"cmd\":1,\"text\":\"Hello World\"}";
+ JsonCommand cmd1;
+ if (ParseJsonCommand(test1, &cmd1) == 0) {
+ printf("测试1成功: cmd=%d, text=%s\n", cmd1.cmd, cmd1.text);
+ } else {
+ printf("测试1失败\n");
+ }
+
+ // 测试命令2:顺时针旋转
+ char test2[] = "{\"cmd\":2,\"text\":\"\"}";
+ JsonCommand cmd2;
+ if (ParseJsonCommand(test2, &cmd2) == 0) {
+ printf("测试2成功: cmd=%d, text=%s\n", cmd2.cmd, cmd2.text);
+ } else {
+ printf("测试2失败\n");
+ }
+
+ // 测试命令3:逆时针旋转
+ char test3[] = "{\"cmd\":3,\"text\":\"ignored\"}";
+ JsonCommand cmd3;
+ if (ParseJsonCommand(test3, &cmd3) == 0) {
+ printf("测试3成功: cmd=%d, text=%s\n", cmd3.cmd, cmd3.text);
+ } else {
+ printf("测试3失败\n");
+ }
+
+ // 测试IP消息创建
+ printf("\n=== IP消息创建测试 ===\n");
+ char ip_msg[128];
+ CreateIpMessage("192.168.1.100", ip_msg, sizeof(ip_msg));
+ printf("IP消息: %s\n", ip_msg);
+}
+
+// 测试舵机控制逻辑
+void test_servo_commands() {
+ printf("\n=== 舵机命令测试 ===\n");
+
+ printf("命令1: 顺时针90°+显示+10秒后逆时针90°+清屏\n");
+ printf("命令2: 顺时针90°\n");
+ printf("命令3: 逆时针90°\n");
+}
+
+int main() {
+ test_json_parsing();
+ test_servo_commands();
+ return 0;
+}
\ No newline at end of file
diff --git a/test_lpr_real_images.py b/test_lpr_real_images.py
deleted file mode 100644
index ce32954..0000000
--- a/test_lpr_real_images.py
+++ /dev/null
@@ -1,99 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-"""
-LPRNet接口真实图片测试脚本
-测试LPRNET_part目录下的真实车牌图片
-"""
-
-import cv2
-import numpy as np
-import os
-from LPRNET_part.lpr_interface import LPRNinitialize_model, LPRNmodel_predict
-
-def test_real_images():
- """
- 测试LPRNET_part目录下的真实车牌图片
- """
- print("=== LPRNet真实图片测试 ===")
-
- # 初始化模型
- print("1. 初始化LPRNet模型...")
- success = LPRNinitialize_model()
- if not success:
- print("模型初始化失败!")
- return
-
- # 获取LPRNET_part目录下的图片文件
- lprnet_dir = "LPRNET_part"
- image_files = []
-
- if os.path.exists(lprnet_dir):
- for file in os.listdir(lprnet_dir):
- if file.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp')):
- image_files.append(os.path.join(lprnet_dir, file))
-
- if not image_files:
- print("未找到图片文件!")
- return
-
- print(f"2. 找到 {len(image_files)} 个图片文件")
-
- # 测试每个图片
- for i, image_path in enumerate(image_files, 1):
- print(f"\n--- 测试图片 {i}: {os.path.basename(image_path)} ---")
-
- try:
- # 使用支持中文路径的方式读取图片
- image = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
-
- if image is None:
- print(f"无法读取图片: {image_path}")
- continue
-
- print(f"图片尺寸: {image.shape}")
-
- # 进行预测
- result = LPRNmodel_predict(image)
- print(f"识别结果: {result}")
- print(f"识别车牌号: {''.join(result)}")
-
- except Exception as e:
- print(f"处理图片 {image_path} 时出错: {e}")
- import traceback
- traceback.print_exc()
-
- print("\n=== 测试完成 ===")
-
-def test_image_loading():
- """
- 测试图片加载方式
- """
- print("\n=== 图片加载测试 ===")
-
- lprnet_dir = "LPRNET_part"
-
- if os.path.exists(lprnet_dir):
- for file in os.listdir(lprnet_dir):
- if file.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp')):
- image_path = os.path.join(lprnet_dir, file)
- print(f"\n测试文件: {file}")
-
- # 方法1: 普通cv2.imread
- img1 = cv2.imread(image_path)
- print(f"cv2.imread结果: {img1 is not None}")
-
- # 方法2: 支持中文路径的方式
- try:
- img2 = cv2.imdecode(np.fromfile(image_path, dtype=np.uint8), cv2.IMREAD_COLOR)
- print(f"cv2.imdecode结果: {img2 is not None}")
- if img2 is not None:
- print(f"图片尺寸: {img2.shape}")
- except Exception as e:
- print(f"cv2.imdecode失败: {e}")
-
-if __name__ == "__main__":
- # 首先测试图片加载
- test_image_loading()
-
- # 然后测试完整的识别流程
- test_real_images()
\ No newline at end of file
diff --git a/udp_client_test.c b/udp_client_test.c
new file mode 100644
index 0000000..1fbdeab
--- /dev/null
+++ b/udp_client_test.c
@@ -0,0 +1,242 @@
+#include // 标准输入输出
+#include // POSIX标准接口
+#include // 错误码
+#include // 字符串处理(操作字符数组)
+
+#include "lwip/sockets.h" // lwIP TCP/IP协议栈:Socket API
+#include "ohos_init.h" // 用于初始化服务(services)和功能(features)
+#include "cmsis_os2.h" // CMSIS-RTOS API V2
+#include "oled_ssd1306.h"
+#include "json_parser.h" // JSON解析器
+#include "wifi_connecter.h" // WiFi连接器
+
+
+
+extern int control_flag ;
+
+// 要发送的数据
+static char request[] = "connecting";
+
+// 要接收的数据
+char response[128] = "";
+
+// 全局变量存储解析后的命令
+JsonCommand g_current_command = {0};
+
+// 发送IP地址到服务器
+void SendIpToServer(const char *host, unsigned short port) {
+ char ip_buffer[32] = {0};
+ char message_buffer[128] = {0};
+
+ // 获取本机IP地址
+ if (GetLocalIpAddress(ip_buffer, sizeof(ip_buffer)) != 0) {
+ printf("Failed to get local IP address\r\n");
+ return;
+ }
+
+ // 创建IP消息
+ if (CreateIpMessage(message_buffer, sizeof(message_buffer), ip_buffer) != 0) {
+ printf("Failed to create IP message\r\n");
+ return;
+ }
+
+ // 创建UDP socket
+ int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
+ if (sockfd < 0) {
+ printf("Failed to create socket\r\n");
+ return;
+ }
+
+ struct sockaddr_in toAddr = {0};
+ toAddr.sin_family = AF_INET;
+ toAddr.sin_port = htons(port);
+
+ if (inet_pton(AF_INET, host, &toAddr.sin_addr) <= 0) {
+ printf("inet_pton failed!\r\n");
+ lwip_close(sockfd);
+ return;
+ }
+
+ // 发送IP地址消息
+ ssize_t retval = sendto(sockfd, message_buffer, strlen(message_buffer), 0,
+ (struct sockaddr *)&toAddr, sizeof(toAddr));
+
+ if (retval < 0) {
+ printf("Failed to send IP message!\r\n");
+ } else {
+ printf("IP message sent: %s\r\n", message_buffer);
+ }
+
+ lwip_close(sockfd);
+}
+
+/// @brief UDP客户端测试函数
+/// @param host UDP服务端IP地址
+/// @param port UDP服务端端口
+void UdpClientTest(const char *host, unsigned short port)
+{
+ // 用于接收Socket API接口返回值
+ ssize_t retval = 0;
+ // 创建一个UDP Socket,返回值为文件描述符
+ int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
+ if (sockfd < 0) {
+ printf("创建socket失败!\r\n");
+ return;
+ }
+
+ // 用于设置服务端的地址信息
+ struct sockaddr_in toAddr = {0};
+ // 用于设置本地绑定的地址信息
+ struct sockaddr_in localAddr = {0};
+
+ // 使用IPv4协议
+ toAddr.sin_family = AF_INET;
+ localAddr.sin_family = AF_INET;
+
+ // 端口号,从主机字节序转为网络字节序
+ toAddr.sin_port = htons(port);
+ localAddr.sin_port = htons(port); // 绑定到相同端口接收数据
+ localAddr.sin_addr.s_addr = INADDR_ANY; // 绑定到所有可用的网络接口
+
+ // 将服务端IP地址从"点分十进制"字符串,转化为标准格式(32位整数)
+ if (inet_pton(AF_INET, host, &toAddr.sin_addr) <= 0)
+ {
+ // 转化失败
+ printf("inet_pton failed!\r\n"); // 输出日志
+ lwip_close(sockfd);
+ return;
+ }
+
+ // 绑定本地端口,这样才能接收数据
+ printf("绑定本地端口 %d...\r\n", port);
+ if (bind(sockfd, (struct sockaddr *)&localAddr, sizeof(localAddr)) < 0) {
+ printf("绑定端口失败!错误: %d\r\n", errno);
+ lwip_close(sockfd);
+ return;
+ }
+ printf("端口绑定成功!\r\n");
+
+ // 发送设备IP地址到服务器
+ SendIpToServer(sockfd, &toAddr);
+
+ // 发送数据
+ // UDP socket是 "无连接的",因此每次发送都必须先指定目标主机和端口,主机可以是多播地址
+ // 发送数据的时候,使用本地随机端口N
+ //
+ // 参数:
+ // s:socket文件描述符
+ // dataptr:要发送的数据
+ // size:要发送的数据的长度,最大65332字节
+ // flags:消息传输标志位
+ // to:目标的地址信息
+ // tolen:目标的地址信息长度
+ //
+ // 返回值:
+ // 发送的字节数,如果出错,返回-1
+ printf("发送连接消息到服务器...\r\n");
+ retval = sendto(sockfd, request, sizeof(request), 0, (struct sockaddr *)&toAddr, sizeof(toAddr));
+
+ // 检查接口返回值,小于0表示发送失败
+ if (retval < 0)
+ {
+ // 发送失败
+ printf("发送消息失败!错误: %d\r\n", errno); // 输出日志
+ lwip_close(sockfd);
+ return;
+ }
+
+ // 发送成功
+ // 输出日志
+ printf("发送UDP消息成功: {%s} %ld 字节\r\n", request, retval);
+
+ // 显示等待接收状态
+ printf("开始监听UDP消息,等待来自 %s 的数据...\r\n", host);
+
+ // 用于记录发送方的地址信息(IP地址和端口号)
+ struct sockaddr_in fromAddr = {0};
+
+ // 用于记录发送方的地址信息长度
+ socklen_t fromLen = sizeof(fromAddr);
+
+ // 在本地随机端口N上面接收数据
+ // UDP socket是 “无连接的”,因此每次接收时并不知道消息来自何处,通过fromAddr参数可以得到发送方的信息(主机、端口号)
+ // device\hisilicon\hispark_pegasus\sdk_liteos\third_party\lwip_sack\include\lwip\sockets.h -> lwip_recvfrom
+ //
+ // 参数:
+ // s:socket文件描述符
+ // buffer:接收数据的缓冲区的地址
+ // length:接收数据的缓冲区的长度
+ // flags:消息接收标志位
+ // address:发送方的地址信息
+ // address_len:发送方的地址信息长度
+ //
+ // 返回值:
+ // 接收的字节数,如果出错,返回-1
+ while (1)
+ {
+ // 清空接收缓冲区
+ memset(response, 0, sizeof(response));
+
+ retval = lwip_recvfrom(sockfd, response, sizeof(response) - 1, 0, (struct sockaddr *)&fromAddr, &fromLen);
+
+ // 检查接口返回值,小于0表示接收失败
+ if (retval <= 0)
+ {
+ // 接收失败,或者收到0长度的数据(忽略掉)
+ printf("recvfrom failed or abort, %ld, %d!\r\n", retval, errno); // 输出日志
+ continue; // 继续接收,不要关闭socket
+ }
+
+ // 接收成功
+ // 末尾添加字符串结束符'\0',以便后续的字符串操作
+ response[retval] = '\0';
+
+ // 输出日志 - 显示所有收到的消息
+ printf("=== 收到UDP消息 ===\r\n");
+ printf("消息内容: {%s}\r\n", response);
+ printf("消息长度: %ld 字节\r\n", retval);
+ printf("发送方IP: %s\r\n", inet_ntoa(fromAddr.sin_addr));
+ printf("发送方端口: %d\r\n", ntohs(fromAddr.sin_port));
+ printf("==================\r\n");
+
+ // 尝试解析JSON命令
+ JsonCommand temp_cmd = {0};
+ if (ParseJsonCommand(response, &temp_cmd) == 0) {
+ printf("JSON解析成功: cmd=%d, text=%s\r\n", temp_cmd.cmd, temp_cmd.text);
+
+ // 保存解析的命令
+ g_current_command = temp_cmd;
+
+ // 根据命令类型设置控制标志
+ if (temp_cmd.cmd >= 1 && temp_cmd.cmd <= 4) {
+ control_flag = temp_cmd.cmd;
+ printf("设置控制标志为: %d\r\n", control_flag);
+ } else {
+ printf("无效的命令类型: %d\r\n", temp_cmd.cmd);
+ }
+ } else {
+ printf("JSON解析失败,尝试旧格式命令\r\n");
+
+ // 兼容旧的字符串命令格式
+ if(strlen(response) > 10) {
+ control_flag = 2;
+ g_current_command.cmd = 0; // 标记为旧命令
+ printf("设置为复杂字符串命令,控制标志: %d\r\n", control_flag);
+ } else if(strcmp(response,"T:on") == 0) {
+ control_flag = 1;
+ g_current_command.cmd = 0; // 标记为旧命令
+ printf("设置为开启命令,控制标志: %d\r\n", control_flag);
+ } else if(strcmp(response,"T:off") == 0) {
+ control_flag = 0;
+ g_current_command.cmd = 0; // 标记为旧命令
+ printf("设置为关闭命令,控制标志: %d\r\n", control_flag);
+ } else {
+ printf("未识别的命令格式: %s\r\n", response);
+ }
+ }
+
+ sleep(1);
+ }
+ // 关闭socket
+ lwip_close(sockfd);
+}
diff --git a/wifi_connecter.c b/wifi_connecter.c
new file mode 100644
index 0000000..cbb1e04
--- /dev/null
+++ b/wifi_connecter.c
@@ -0,0 +1,146 @@
+#include "cmsis_os2.h" // CMSIS-RTOS API V2
+#include "wifi_device.h" // Wi-Fi设备接口:station模式
+
+#include "lwip/netifapi.h" // lwIP TCP/IP协议栈:网络接口API
+#include "lwip/api_shell.h" // lwIP TCP/IP协议栈:SHELL命令API
+
+static void PrintLinkedInfo(WifiLinkedInfo* info)
+{
+ if (!info) return;
+
+ static char macAddress[32] = {0};
+ unsigned char* mac = info->bssid;
+ snprintf(macAddress, sizeof(macAddress), "%02X:%02X:%02X:%02X:%02X:%02X",
+ mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
+ printf("bssid: %s, rssi: %d, connState: %d, reason: %d, ssid: %s\r\n",
+ macAddress, info->rssi, info->connState, info->disconnectedReason, info->ssid);
+}
+
+static volatile int g_connected = 0;
+
+static void OnWifiConnectionChanged(int state, WifiLinkedInfo* info)
+{
+ if (!info) return;
+
+ printf("%s %d, state = %d, info = \r\n", __FUNCTION__, __LINE__, state);
+ PrintLinkedInfo(info);
+
+ if (state == WIFI_STATE_AVALIABLE) {
+ g_connected = 1;
+ } else {
+ g_connected = 0;
+ }
+}
+
+static void OnWifiScanStateChanged(int state, int size)
+{
+ printf("%s %d, state = %X, size = %d\r\n", __FUNCTION__, __LINE__, state, size);
+}
+
+static WifiEvent g_defaultWifiEventListener = {
+ .OnWifiConnectionChanged = OnWifiConnectionChanged,
+ .OnWifiScanStateChanged = OnWifiScanStateChanged
+};
+
+static struct netif* g_iface = NULL;
+
+err_t netifapi_set_hostname(struct netif *netif, char *hostname, u8_t namelen);
+
+int ConnectToHotspot(WifiDeviceConfig* apConfig)
+{
+ WifiErrorCode errCode;
+ int netId = -1;
+
+ errCode = RegisterWifiEvent(&g_defaultWifiEventListener);
+ printf("RegisterWifiEvent: %d\r\n", errCode);
+
+ errCode = EnableWifi();
+ printf("EnableWifi: %d\r\n", errCode);
+
+ errCode = AddDeviceConfig(apConfig, &netId);
+ printf("AddDeviceConfig: %d\r\n", errCode);
+
+ g_connected = 0;
+ errCode = ConnectTo(netId);
+ printf("ConnectTo(%d): %d\r\n", netId, errCode);
+
+ while (!g_connected) { // wait until connect to AP
+ // printf("connecting\n");
+ osDelay(10);
+ }
+ printf("g_connected: %d\r\n", g_connected);
+
+ g_iface = netifapi_netif_find("wlan0");
+ if (g_iface) {
+ err_t ret = 0;
+ char* hostname = "hispark";
+ ret = netifapi_set_hostname(g_iface, hostname, strlen(hostname));
+ printf("netifapi_set_hostname: %d\r\n", ret);
+
+ ret = netifapi_dhcp_start(g_iface);
+ printf("netifapi_dhcp_start: %d\r\n", ret);
+
+ osDelay(100); // wait DHCP server give me IP
+#if 0
+ ret = netifapi_netif_common(g_iface, dhcp_clients_info_show, NULL);
+ printf("netifapi_netif_common: %d\r\n", ret);
+#else
+ // 下面这种方式也可以打印 IP、网关、子网掩码信息
+ ip4_addr_t ip = {0};
+ ip4_addr_t netmask = {0};
+ ip4_addr_t gw = {0};
+ ret = netifapi_netif_get_addr(g_iface, &ip, &netmask, &gw);
+ if (ret == ERR_OK) {
+ printf("ip = %s\r\n", ip4addr_ntoa(&ip));
+ printf("netmask = %s\r\n", ip4addr_ntoa(&netmask));
+ printf("gw = %s\r\n", ip4addr_ntoa(&gw));
+ }
+ printf("netifapi_netif_get_addr: %d\r\n", ret);
+#endif
+ }
+ return netId;
+}
+
+void DisconnectWithHotspot(int netId)
+{
+ if (g_iface) {
+ err_t ret = netifapi_dhcp_stop(g_iface);
+ printf("netifapi_dhcp_stop: %d\r\n", ret);
+ }
+
+ WifiErrorCode errCode = Disconnect(); // disconnect with your AP
+ printf("Disconnect: %d\r\n", errCode);
+
+ errCode = UnRegisterWifiEvent(&g_defaultWifiEventListener);
+ printf("UnRegisterWifiEvent: %d\r\n", errCode);
+
+ RemoveDevice(netId); // remove AP config
+ printf("RemoveDevice: %d\r\n", errCode);
+
+ errCode = DisableWifi();
+ printf("DisableWifi: %d\r\n", errCode);
+}
+
+// 获取本机IP地址
+int GetLocalIpAddress(char* ip_buffer, int buffer_size)
+{
+ if (!ip_buffer || buffer_size < 16 || !g_iface) {
+ return -1;
+ }
+
+ ip4_addr_t ip = {0};
+ ip4_addr_t netmask = {0};
+ ip4_addr_t gw = {0};
+
+ err_t ret = netifapi_netif_get_addr(g_iface, &ip, &netmask, &gw);
+ if (ret == ERR_OK) {
+ const char* ip_str = ip4addr_ntoa(&ip);
+ if (ip_str && strlen(ip_str) < buffer_size) {
+ strcpy(ip_buffer, ip_str);
+ return 0;
+ }
+ }
+
+ return -1;
+}
+
diff --git a/wifi_connecter.h b/wifi_connecter.h
new file mode 100644
index 0000000..540a3c0
--- /dev/null
+++ b/wifi_connecter.h
@@ -0,0 +1,13 @@
+#ifndef WIFI_CONNECTER_H
+#define WIFI_CONNECTER_H
+
+#include "wifi_device.h" // Wi-Fi设备接口:station模式
+
+int ConnectToHotspot(WifiDeviceConfig* apConfig);
+
+void DisconnectWithHotspot(int netId);
+
+// 获取本机IP地址
+int GetLocalIpAddress(char* ip_buffer, int buffer_size);
+
+#endif // WIFI_CONNECTER_H
\ No newline at end of file
diff --git a/yolopart/detector.py b/yolopart/detector.py
deleted file mode 100644
index b95fd80..0000000
--- a/yolopart/detector.py
+++ /dev/null
@@ -1,275 +0,0 @@
-import cv2
-import numpy as np
-from ultralytics import YOLO
-import os
-
-class LicensePlateYOLO:
- """
- 车牌YOLO检测器类
- 负责加载YOLO pose模型并进行车牌检测和角点提取
- """
-
- def __init__(self, model_path=None):
- """
- 初始化YOLO检测器
-
- 参数:
- model_path: 模型文件路径,如果为None则使用默认路径
- """
- self.model = None
- self.model_path = model_path or self._get_default_model_path()
- self.class_names = {0: '蓝牌', 1: '绿牌'}
- self.load_model()
-
- def _get_default_model_path(self):
- """获取默认模型路径"""
- current_dir = os.path.dirname(__file__)
- return os.path.join(current_dir, "yolo11s-pose42.pt")
-
- def load_model(self):
- """
- 加载YOLO pose模型
-
- 返回:
- bool: 加载是否成功
- """
- try:
- if os.path.exists(self.model_path):
- self.model = YOLO(self.model_path)
- print(f"YOLO模型加载成功: {self.model_path}")
- return True
- else:
- print(f"模型文件不存在: {self.model_path}")
- return False
- except Exception as e:
- print(f"YOLO模型加载失败: {e}")
- return False
-
- def detect_license_plates(self, image, conf_threshold=0.5):
- """
- 检测图像中的车牌
-
- 参数:
- image: 输入图像 (numpy数组)
- conf_threshold: 置信度阈值
-
- 返回:
- list: 检测结果列表,每个元素包含:
- - box: 边界框坐标 [x1, y1, x2, y2]
- - keypoints: 四个角点坐标 [[x1,y1], [x2,y2], [x3,y3], [x4,y4]]
- - confidence: 置信度
- - class_id: 类别ID (0=蓝牌, 1=绿牌)
- - class_name: 类别名称
- """
- if self.model is None:
- print("模型未加载")
- return []
-
- try:
- # 进行推理
- results = self.model(image, conf=conf_threshold, verbose=False)
- detections = []
-
- for result in results:
- # 检查是否有检测结果
- if result.boxes is None or result.keypoints is None:
- continue
-
- # 提取检测信息
- boxes = result.boxes.xyxy.cpu().numpy() # 边界框
- keypoints = result.keypoints.xy.cpu().numpy() # 关键点
- confidences = result.boxes.conf.cpu().numpy() # 置信度
- classes = result.boxes.cls.cpu().numpy() # 类别
-
- # 处理每个检测结果
- for i in range(len(boxes)):
- # 检查关键点数量是否为4个
- if len(keypoints[i]) == 4:
- class_id = int(classes[i])
- detection = {
- 'box': boxes[i],
- 'keypoints': keypoints[i],
- 'confidence': confidences[i],
- 'class_id': class_id,
- 'class_name': self.class_names.get(class_id, '未知')
- }
- detections.append(detection)
- else:
- # 关键点不足4个,记录但标记为不完整
- class_id = int(classes[i])
- detection = {
- 'box': boxes[i],
- 'keypoints': keypoints[i] if len(keypoints[i]) > 0 else [],
- 'confidence': confidences[i],
- 'class_id': class_id,
- 'class_name': self.class_names.get(class_id, '未知'),
- 'incomplete': True # 标记为不完整
- }
- detections.append(detection)
-
- return detections
-
- except Exception as e:
- print(f"检测过程中出错: {e}")
- return []
-
- def draw_detections(self, image, detections):
- """
- 在图像上绘制检测结果
-
- 参数:
- image: 输入图像
- detections: 检测结果列表
-
- 返回:
- numpy.ndarray: 绘制了检测结果的图像
- """
- draw_image = image.copy()
-
- for i, detection in enumerate(detections):
- box = detection['box']
- keypoints = detection['keypoints']
- class_name = detection['class_name']
- confidence = detection['confidence']
- incomplete = detection.get('incomplete', False)
-
- # 绘制边界框
- x1, y1, x2, y2 = map(int, box)
-
- # 根据车牌类型选择颜色
- if class_name == '绿牌':
- box_color = (0, 255, 0) # 绿色
- elif class_name == '蓝牌':
- box_color = (255, 0, 0) # 蓝色
- else:
- box_color = (128, 128, 128) # 灰色
-
- cv2.rectangle(draw_image, (x1, y1), (x2, y2), box_color, 2)
-
- # 绘制标签
- label = f"{class_name} {confidence:.2f}"
- if incomplete:
- label += " (不完整)"
-
- # 计算文本大小和位置
- font = cv2.FONT_HERSHEY_SIMPLEX
- font_scale = 0.6
- thickness = 2
- (text_width, text_height), _ = cv2.getTextSize(label, font, font_scale, thickness)
-
- # 绘制文本背景
- cv2.rectangle(draw_image, (x1, y1 - text_height - 10),
- (x1 + text_width, y1), box_color, -1)
-
- # 绘制文本
- cv2.putText(draw_image, label, (x1, y1 - 5),
- font, font_scale, (255, 255, 255), thickness)
-
- # 绘制关键点和连线
- if len(keypoints) >= 4 and not incomplete:
- # 四个角点完整,用黄色连线
- points = [(int(kp[0]), int(kp[1])) for kp in keypoints[:4]]
-
- # 绘制关键点
- for point in points:
- cv2.circle(draw_image, point, 5, (0, 255, 255), -1)
-
- # 连接关键点形成四边形(按顺序连接)
- # 假设关键点顺序为: right_bottom, left_bottom, left_top, right_top
- for j in range(4):
- cv2.line(draw_image, points[j], points[(j+1)%4], (0, 255, 255), 2)
-
- elif len(keypoints) > 0:
- # 关键点不完整,用红色标记现有点
- for kp in keypoints:
- point = (int(kp[0]), int(kp[1]))
- cv2.circle(draw_image, point, 5, (0, 0, 255), -1)
-
- return draw_image
-
- def correct_license_plate(self, image, keypoints, target_size=(240, 80)):
- """
- 使用四个角点对车牌进行透视变换矫正
-
- 参数:
- image: 原始图像
- keypoints: 四个角点坐标
- target_size: 目标尺寸 (width, height)
-
- 返回:
- numpy.ndarray: 矫正后的车牌图像,如果失败返回None
- """
- if len(keypoints) != 4:
- return None
-
- try:
- # 将关键点转换为numpy数组
- src_points = np.array(keypoints, dtype=np.float32)
-
- # 定义目标矩形的四个角点
- # 假设关键点顺序为: right_bottom, left_bottom, left_top, right_top
- # 重新排序为标准顺序: left_top, right_top, right_bottom, left_bottom
- width, height = target_size
- dst_points = np.array([
- [0, 0], # left_top
- [width, 0], # right_top
- [width, height], # right_bottom
- [0, height] # left_bottom
- ], dtype=np.float32)
-
- # 重新排序源点以匹配目标点
- # 原顺序: right_bottom, left_bottom, left_top, right_top
- # 目标顺序: left_top, right_top, right_bottom, left_bottom
- reordered_src = np.array([
- src_points[2], # left_top
- src_points[3], # right_top
- src_points[0], # right_bottom
- src_points[1] # left_bottom
- ], dtype=np.float32)
-
- # 计算透视变换矩阵
- matrix = cv2.getPerspectiveTransform(reordered_src, dst_points)
-
- # 应用透视变换
- corrected = cv2.warpPerspective(image, matrix, target_size)
-
- return corrected
-
- except Exception as e:
- print(f"车牌矫正失败: {e}")
- return None
-
- def get_model_info(self):
- """
- 获取模型信息
-
- 返回:
- dict: 模型信息字典
- """
- if self.model is None:
- return {"status": "未加载", "path": self.model_path}
-
- return {
- "status": "已加载",
- "path": self.model_path,
- "model_type": "YOLO11 Pose",
- "classes": self.class_names
- }
-
-def initialize_yolo_detector(model_path=None):
- """
- 初始化YOLO检测器的便捷函数
-
- 参数:
- model_path: 模型文件路径
-
- 返回:
- LicensePlateYOLO: 初始化后的检测器实例
- """
- detector = LicensePlateYOLO(model_path)
- return detector
-
-if __name__ == "__main__":
- # 测试代码
- detector = initialize_yolo_detector()
- print("检测器信息:", detector.get_model_info())
\ No newline at end of file
diff --git a/yolopart/yolo11s-pose42.pt b/yolopart/yolo11s-pose42.pt
deleted file mode 100644
index 45f8ddc..0000000
Binary files a/yolopart/yolo11s-pose42.pt and /dev/null differ