更新 CRNN_part/crnn_interface.py
This commit is contained in:
		@@ -1,4 +1,211 @@
 | 
				
			|||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import torch.nn as nn
 | 
				
			||||||
 | 
					import torch.nn.functional as F
 | 
				
			||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
 | 
					from PIL import Image
 | 
				
			||||||
 | 
					import cv2
 | 
				
			||||||
 | 
					from torchvision import transforms
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# 全局变量
 | 
				
			||||||
 | 
					crnn_model = None
 | 
				
			||||||
 | 
					crnn_decoder = None
 | 
				
			||||||
 | 
					crnn_preprocessor = None
 | 
				
			||||||
 | 
					device = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class CRNN(nn.Module):
 | 
				
			||||||
 | 
					    """CRNN车牌识别模型"""
 | 
				
			||||||
 | 
					    def __init__(self, img_height=32, num_classes=68, hidden_size=256):
 | 
				
			||||||
 | 
					        super(CRNN, self).__init__()
 | 
				
			||||||
 | 
					        self.img_height = img_height
 | 
				
			||||||
 | 
					        self.num_classes = num_classes
 | 
				
			||||||
 | 
					        self.hidden_size = hidden_size
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # CNN特征提取部分 - 7层卷积
 | 
				
			||||||
 | 
					        self.cnn = nn.Sequential(
 | 
				
			||||||
 | 
					            # 第1层:3->64, 3x3卷积
 | 
				
			||||||
 | 
					            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
 | 
				
			||||||
 | 
					            nn.BatchNorm2d(64),
 | 
				
			||||||
 | 
					            nn.ReLU(inplace=True),
 | 
				
			||||||
 | 
					            nn.MaxPool2d(kernel_size=2, stride=2),
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # 第2层:64->128, 3x3卷积
 | 
				
			||||||
 | 
					            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
 | 
				
			||||||
 | 
					            nn.BatchNorm2d(128),
 | 
				
			||||||
 | 
					            nn.ReLU(inplace=True),
 | 
				
			||||||
 | 
					            nn.MaxPool2d(kernel_size=2, stride=2),
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # 第3层:128->256, 3x3卷积
 | 
				
			||||||
 | 
					            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
 | 
				
			||||||
 | 
					            nn.BatchNorm2d(256),
 | 
				
			||||||
 | 
					            nn.ReLU(inplace=True),
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # 第4层:256->256, 3x3卷积
 | 
				
			||||||
 | 
					            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
 | 
				
			||||||
 | 
					            nn.BatchNorm2d(256),
 | 
				
			||||||
 | 
					            nn.ReLU(inplace=True),
 | 
				
			||||||
 | 
					            nn.MaxPool2d(kernel_size=(2, 1), stride=(2, 1)),
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # 第5层:256->512, 3x3卷积
 | 
				
			||||||
 | 
					            nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
 | 
				
			||||||
 | 
					            nn.BatchNorm2d(512),
 | 
				
			||||||
 | 
					            nn.ReLU(inplace=True),
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # 第6层:512->512, 3x3卷积
 | 
				
			||||||
 | 
					            nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
 | 
				
			||||||
 | 
					            nn.BatchNorm2d(512),
 | 
				
			||||||
 | 
					            nn.ReLU(inplace=True),
 | 
				
			||||||
 | 
					            nn.MaxPool2d(kernel_size=(2, 1), stride=(2, 1)),
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # 第7层:512->512, 2x2卷积
 | 
				
			||||||
 | 
					            nn.Conv2d(512, 512, kernel_size=2, stride=1, padding=0),
 | 
				
			||||||
 | 
					            nn.BatchNorm2d(512),
 | 
				
			||||||
 | 
					            nn.ReLU(inplace=True),
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # RNN序列建模部分 - 2层双向LSTM
 | 
				
			||||||
 | 
					        self.rnn = nn.LSTM(
 | 
				
			||||||
 | 
					            input_size=512,
 | 
				
			||||||
 | 
					            hidden_size=hidden_size,
 | 
				
			||||||
 | 
					            num_layers=2,
 | 
				
			||||||
 | 
					            batch_first=True,
 | 
				
			||||||
 | 
					            bidirectional=True
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 全连接分类层
 | 
				
			||||||
 | 
					        self.fc = nn.Linear(hidden_size * 2, num_classes)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					    def forward(self, x):
 | 
				
			||||||
 | 
					        batch_size = x.size(0)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # CNN特征提取
 | 
				
			||||||
 | 
					        conv_out = self.cnn(x)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 重塑为RNN输入格式
 | 
				
			||||||
 | 
					        batch_size, channels, height, width = conv_out.size()
 | 
				
			||||||
 | 
					        conv_out = conv_out.permute(0, 3, 1, 2)
 | 
				
			||||||
 | 
					        conv_out = conv_out.contiguous().view(batch_size, width, channels * height)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # RNN序列建模
 | 
				
			||||||
 | 
					        rnn_out, _ = self.rnn(conv_out)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 全连接分类
 | 
				
			||||||
 | 
					        output = self.fc(rnn_out)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 转换为CTC需要的格式:(width, batch_size, num_classes)
 | 
				
			||||||
 | 
					        output = output.permute(1, 0, 2)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        return output
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class CTCDecoder:
 | 
				
			||||||
 | 
					    """CTC解码器"""
 | 
				
			||||||
 | 
					    def __init__(self):
 | 
				
			||||||
 | 
					        # 定义中国车牌字符集(68个字符)
 | 
				
			||||||
 | 
					        self.chars = [
 | 
				
			||||||
 | 
					            # 空白字符(CTC需要)
 | 
				
			||||||
 | 
					            '<BLANK>',
 | 
				
			||||||
 | 
					            # 中文省份简称
 | 
				
			||||||
 | 
					            '京', '沪', '津', '渝', '冀', '晋', '蒙', '辽', '吉', '黑',
 | 
				
			||||||
 | 
					            '苏', '浙', '皖', '闽', '赣', '鲁', '豫', '鄂', '湘', '粤',
 | 
				
			||||||
 | 
					            '桂', '琼', '川', '贵', '云', '藏', '陕', '甘', '青', '宁', '新',
 | 
				
			||||||
 | 
					            # 字母 A-Z
 | 
				
			||||||
 | 
					            'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 
 | 
				
			||||||
 | 
					            'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
 | 
				
			||||||
 | 
					            # 数字 0-9
 | 
				
			||||||
 | 
					            '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'
 | 
				
			||||||
 | 
					        ]
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        self.char_to_idx = {char: idx for idx, char in enumerate(self.chars)}
 | 
				
			||||||
 | 
					        self.idx_to_char = {idx: char for idx, char in enumerate(self.chars)}
 | 
				
			||||||
 | 
					        self.blank_idx = 0
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def decode_greedy(self, predictions):
 | 
				
			||||||
 | 
					        """贪婪解码"""
 | 
				
			||||||
 | 
					        # 获取每个时间步的最大概率索引
 | 
				
			||||||
 | 
					        indices = torch.argmax(predictions, dim=1)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # CTC解码:移除重复字符和空白字符
 | 
				
			||||||
 | 
					        decoded_chars = []
 | 
				
			||||||
 | 
					        prev_idx = -1
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        for idx in indices:
 | 
				
			||||||
 | 
					            idx = idx.item()
 | 
				
			||||||
 | 
					            if idx != prev_idx and idx != self.blank_idx:
 | 
				
			||||||
 | 
					                if idx < len(self.chars):
 | 
				
			||||||
 | 
					                    decoded_chars.append(self.chars[idx])
 | 
				
			||||||
 | 
					            prev_idx = idx
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        return ''.join(decoded_chars)
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def decode_with_confidence(self, predictions):
 | 
				
			||||||
 | 
					        """解码并返回置信度信息"""
 | 
				
			||||||
 | 
					        # 应用softmax获得概率
 | 
				
			||||||
 | 
					        probs = torch.softmax(predictions, dim=1)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 贪婪解码
 | 
				
			||||||
 | 
					        indices = torch.argmax(probs, dim=1)
 | 
				
			||||||
 | 
					        max_probs = torch.max(probs, dim=1)[0]
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # CTC解码
 | 
				
			||||||
 | 
					        decoded_chars = []
 | 
				
			||||||
 | 
					        char_confidences = []
 | 
				
			||||||
 | 
					        prev_idx = -1
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        for i, idx in enumerate(indices):
 | 
				
			||||||
 | 
					            idx = idx.item()
 | 
				
			||||||
 | 
					            confidence = max_probs[i].item()
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            if idx != prev_idx and idx != self.blank_idx:
 | 
				
			||||||
 | 
					                if idx < len(self.chars):
 | 
				
			||||||
 | 
					                    decoded_chars.append(self.chars[idx])
 | 
				
			||||||
 | 
					                    char_confidences.append(confidence)
 | 
				
			||||||
 | 
					            prev_idx = idx
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        text = ''.join(decoded_chars)
 | 
				
			||||||
 | 
					        avg_confidence = np.mean(char_confidences) if char_confidences else 0.0
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        return text, avg_confidence, char_confidences
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class LicensePlatePreprocessor:
 | 
				
			||||||
 | 
					    """车牌图像预处理器"""
 | 
				
			||||||
 | 
					    def __init__(self, target_height=32, target_width=128):
 | 
				
			||||||
 | 
					        self.target_height = target_height
 | 
				
			||||||
 | 
					        self.target_width = target_width
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 定义图像变换
 | 
				
			||||||
 | 
					        self.transform = transforms.Compose([
 | 
				
			||||||
 | 
					            transforms.Resize((target_height, target_width)),
 | 
				
			||||||
 | 
					            transforms.ToTensor(),
 | 
				
			||||||
 | 
					            transforms.Normalize(mean=[0.485, 0.456, 0.406], 
 | 
				
			||||||
 | 
					                               std=[0.229, 0.224, 0.225])
 | 
				
			||||||
 | 
					        ])
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def preprocess_numpy_array(self, image_array):
 | 
				
			||||||
 | 
					        """预处理numpy数组格式的图像"""
 | 
				
			||||||
 | 
					        try:
 | 
				
			||||||
 | 
					            # 确保图像是RGB格式
 | 
				
			||||||
 | 
					            if len(image_array.shape) == 3 and image_array.shape[2] == 3:
 | 
				
			||||||
 | 
					                # 如果是BGR格式,转换为RGB
 | 
				
			||||||
 | 
					                if image_array.dtype == np.uint8:
 | 
				
			||||||
 | 
					                    image_array = cv2.cvtColor(image_array, cv2.COLOR_BGR2RGB)
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # 转换为PIL图像
 | 
				
			||||||
 | 
					            if image_array.dtype != np.uint8:
 | 
				
			||||||
 | 
					                image_array = (image_array * 255).astype(np.uint8)
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            image = Image.fromarray(image_array)
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # 应用变换
 | 
				
			||||||
 | 
					            tensor = self.transform(image)
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # 添加batch维度
 | 
				
			||||||
 | 
					            tensor = tensor.unsqueeze(0)
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            return tensor
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					        except Exception as e:
 | 
				
			||||||
 | 
					            print(f"图像预处理失败: {e}")
 | 
				
			||||||
 | 
					            return None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def initialize_crnn_model():
 | 
					def initialize_crnn_model():
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
@@ -7,12 +214,65 @@ def initialize_crnn_model():
 | 
				
			|||||||
    返回:
 | 
					    返回:
 | 
				
			||||||
        bool: 初始化是否成功
 | 
					        bool: 初始化是否成功
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    # CRNN模型初始化代码
 | 
					    global crnn_model, crnn_decoder, crnn_preprocessor, device
 | 
				
			||||||
    # 例如: 加载预训练模型、设置参数等
 | 
					 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    print("CRNN模型初始化完成(占位)")
 | 
					    try:
 | 
				
			||||||
    return True
 | 
					        # 设置设备
 | 
				
			||||||
 | 
					        device = 'cuda' if torch.cuda.is_available() else 'cpu'
 | 
				
			||||||
 | 
					        print(f"CRNN使用设备: {device}")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 初始化组件
 | 
				
			||||||
 | 
					        crnn_decoder = CTCDecoder()
 | 
				
			||||||
 | 
					        crnn_preprocessor = LicensePlatePreprocessor(target_height=32, target_width=128)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 创建模型实例
 | 
				
			||||||
 | 
					        crnn_model = CRNN(num_classes=len(crnn_decoder.chars), hidden_size=256)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 加载模型权重
 | 
				
			||||||
 | 
					        model_path = os.path.join(os.path.dirname(__file__), 'best_model.pth')
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        if not os.path.exists(model_path):
 | 
				
			||||||
 | 
					            raise FileNotFoundError(f"模型文件不存在: {model_path}")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        print(f"正在加载CRNN模型: {model_path}")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 加载检查点
 | 
				
			||||||
 | 
					        checkpoint = torch.load(model_path, map_location=device, weights_only=False)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 处理不同的模型保存格式
 | 
				
			||||||
 | 
					        if isinstance(checkpoint, dict):
 | 
				
			||||||
 | 
					            if 'model_state_dict' in checkpoint:
 | 
				
			||||||
 | 
					                # 完整检查点格式
 | 
				
			||||||
 | 
					                state_dict = checkpoint['model_state_dict']
 | 
				
			||||||
 | 
					                print(f"检查点信息:")
 | 
				
			||||||
 | 
					                print(f"  - 训练轮次: {checkpoint.get('epoch', 'N/A')}")
 | 
				
			||||||
 | 
					                print(f"  - 最佳验证损失: {checkpoint.get('best_val_loss', 'N/A')}")
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                # 精简模型格式(只包含权重)
 | 
				
			||||||
 | 
					                print("加载精简模型(仅权重)")
 | 
				
			||||||
 | 
					                state_dict = checkpoint
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            # 直接是状态字典
 | 
				
			||||||
 | 
					            state_dict = checkpoint
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 加载权重
 | 
				
			||||||
 | 
					        crnn_model.load_state_dict(state_dict)
 | 
				
			||||||
 | 
					        crnn_model.to(device)
 | 
				
			||||||
 | 
					        crnn_model.eval()
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        print("CRNN模型初始化完成")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 统计模型参数
 | 
				
			||||||
 | 
					        total_params = sum(p.numel() for p in crnn_model.parameters())
 | 
				
			||||||
 | 
					        print(f"CRNN模型参数数量: {total_params:,}")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        return True
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					    except Exception as e:
 | 
				
			||||||
 | 
					        print(f"CRNN模型初始化失败: {e}")
 | 
				
			||||||
 | 
					        import traceback
 | 
				
			||||||
 | 
					        traceback.print_exc()
 | 
				
			||||||
 | 
					        return False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def crnn_predict(image_array):
 | 
					def crnn_predict(image_array):
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
@@ -25,13 +285,47 @@ def crnn_predict(image_array):
 | 
				
			|||||||
        list: 包含7个字符的列表,代表车牌号的每个字符
 | 
					        list: 包含7个字符的列表,代表车牌号的每个字符
 | 
				
			||||||
              例如: ['京', 'A', '1', '2', '3', '4', '5']
 | 
					              例如: ['京', 'A', '1', '2', '3', '4', '5']
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    # 这是CRNN部分的占位函数
 | 
					    global crnn_model, crnn_decoder, crnn_preprocessor, device
 | 
				
			||||||
    # 实际实现时,这里应该包含:
 | 
					 | 
				
			||||||
    # 1. 图像预处理
 | 
					 | 
				
			||||||
    # 2. CRNN模型推理
 | 
					 | 
				
			||||||
    # 3. CTC解码
 | 
					 | 
				
			||||||
    # 4. 后处理和字符识别
 | 
					 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    # 临时返回占位结果
 | 
					    if crnn_model is None or crnn_decoder is None or crnn_preprocessor is None:
 | 
				
			||||||
    placeholder_result = ['待', '识', '别', '0', '0', '0', '0']
 | 
					        print("CRNN模型未初始化,请先调用initialize_crnn_model()")
 | 
				
			||||||
    return placeholder_result
 | 
					        return ['待', '识', '别', '0', '0', '0', '0']
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        # 预处理图像
 | 
				
			||||||
 | 
					        input_tensor = crnn_preprocessor.preprocess_numpy_array(image_array)
 | 
				
			||||||
 | 
					        if input_tensor is None:
 | 
				
			||||||
 | 
					            raise ValueError("图像预处理失败")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        input_tensor = input_tensor.to(device)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # 模型推理
 | 
				
			||||||
 | 
					        with torch.no_grad():
 | 
				
			||||||
 | 
					            outputs = crnn_model(input_tensor)  # (seq_len, batch_size, num_classes)
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # 移除batch维度
 | 
				
			||||||
 | 
					            outputs = outputs.squeeze(1)  # (seq_len, num_classes)
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # CTC解码
 | 
				
			||||||
 | 
					            predicted_text, confidence, char_confidences = crnn_decoder.decode_with_confidence(outputs)
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            print(f"CRNN识别结果: {predicted_text}, 置信度: {confidence:.3f}")
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # 将字符串转换为字符列表
 | 
				
			||||||
 | 
					            char_list = list(predicted_text)
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            # 确保返回7个字符(车牌标准长度)
 | 
				
			||||||
 | 
					            if len(char_list) < 7:
 | 
				
			||||||
 | 
					                # 如果识别结果少于7个字符,用'0'补齐
 | 
				
			||||||
 | 
					                char_list.extend(['0'] * (7 - len(char_list)))
 | 
				
			||||||
 | 
					            elif len(char_list) > 7:
 | 
				
			||||||
 | 
					                # 如果识别结果多于7个字符,截取前7个
 | 
				
			||||||
 | 
					                char_list = char_list[:7]
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            return char_list
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					    except Exception as e:
 | 
				
			||||||
 | 
					        print(f"CRNN识别失败: {e}")
 | 
				
			||||||
 | 
					        import traceback
 | 
				
			||||||
 | 
					        traceback.print_exc()
 | 
				
			||||||
 | 
					        return ['识', '别', '失', '败', '0', '0', '0']
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user